start new:
tmux
start new with session name:
tmux new -s myname
import pyeliza | |
class Eliza: | |
aliases = 'eliza' | |
description = 'Virtual therapist' | |
_therapist = pyeliza.eliza() | |
def execute(self, expression, context): | |
''' | |
>>> from mock import Mock |
import pygame, sys, random, math | |
from pygame.locals import * | |
# set up game | |
pygame.init() | |
mainClock = pygame.time.Clock() | |
# create window | |
WINDOWWIDTH = 600 | |
WINDOWHEIGHT = 600 |
import numpy as np | |
import scipy.linalg.blas | |
cdef extern from "f2pyptr.h": | |
void *f2py_pointer(object) except NULL | |
ctypedef int dgemm_t( | |
char *transa, char *transb, | |
int *m, int *n, int *k, | |
double *alpha, |
"""A simple implementation of a greedy transition-based parser. Released under BSD license.""" | |
from os import path | |
import os | |
import sys | |
from collections import defaultdict | |
import random | |
import time | |
import pickle | |
SHIFT = 0; RIGHT = 1; LEFT = 2; |
{0: 'tench, Tinca tinca', | |
1: 'goldfish, Carassius auratus', | |
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', | |
3: 'tiger shark, Galeocerdo cuvieri', | |
4: 'hammerhead, hammerhead shark', | |
5: 'electric ray, crampfish, numbfish, torpedo', | |
6: 'stingray', | |
7: 'cock', | |
8: 'hen', | |
9: 'ostrich, Struthio camelus', |
""" Trains an MNIST classifier using Synthetic Gradients. See Google DeepMind paper @ arxiv.org/abs/1608.05343. """ | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
from tensorflow.examples.tutorials.mnist import input_data # just use tensorflow's mnist api | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=False) | |
# hyperparameters | |
global_step = 0 | |
batch_size = 10 |
import numpy as np | |
import tensorflow as tf | |
import scipy | |
from tensorflow.contrib.eager.python import tfe | |
tfe.enable_eager_execution() | |
# manual numpy example | |
# X = np.array(([[0., 1], [2, 3]])) | |
# W0 = X | |
# W1 = np.array(([[0., 1], [2, 3]]))/10 |
### JHW 2018 | |
import numpy as np | |
import umap | |
# This code from the excellent module at: | |
# https://stackoverflow.com/questions/4643647/fast-prime-factorization-module | |
import random |