Last active
December 21, 2017 16:33
-
-
Save adept/9e64d7bd82e01c7db9e04d4bf3a0759d to your computer and use it in GitHub Desktop.
odd+odd, even+even, even+odd
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module eveneven where | |
Path (A : U) (a b : A) : U = PathP (<_> A) a b | |
data bool = true | false | |
data nat = zero | |
| suc (n : nat) | |
add (m : nat) : nat -> nat = split | |
zero -> m | |
suc n -> suc (add m n) | |
mutual | |
even : nat -> bool = split | |
zero -> true | |
suc n -> odd n | |
odd : nat -> bool = split | |
zero -> false | |
suc n -> even n | |
and (x:bool) : bool -> bool = split | |
true -> x | |
false -> false | |
andtrue : (x:bool) -> Path bool x (and true x) = split | |
true -> <i> true | |
false -> <i> false | |
andfalse : (x:bool) -> Path bool false (and false x) = split | |
true -> <i> false | |
false -> <i> false | |
andsym (a:bool) : (b:bool) -> Path bool (and a b) (and b a) = split | |
true -> andtrue a | |
false -> andfalse a | |
evenodd : (n : nat) -> Path bool (even n) (odd (suc n)) = split | |
zero -> <i> true | |
suc n -> <i> odd n | |
addsuc (a:nat) : (n : nat) -> Path nat (add (suc a) n) (suc (add a n)) = split | |
zero -> <i> suc a | |
suc m -> <i> suc (addsuc a m @ i) | |
mutual | |
even_plus_even_is_even (n:nat) : (m : nat) -> Path bool (and (even n) (even m)) (even(add n m)) = split | |
zero -> <i> even n | |
suc m -> even_plus_odd_is_odd n m | |
odd_plus_even_is_odd (n:nat) : (m : nat) -> Path bool (and (odd n) (even m)) (odd(add n m)) = split | |
zero -> <i> odd n | |
suc m -> odd_plus_odd_is_even n m | |
even_plus_odd_is_odd (n:nat) : (m : nat) -> Path bool (and (even n) (odd m)) (odd(add n m)) = split | |
zero -> ? -- TODO | |
suc m -> even_plus_even_is_even n m | |
odd_plus_odd_is_even (n:nat) : (m : nat) -> Path bool (and (odd n) (odd m)) (even(add n m)) = split | |
zero -> ? -- TODO | |
suc m -> odd_plus_even_is_odd n m | |
module eveneven where
Path (A : U) (a b : A) : U = PathP (<_> A) a b
data bool = true | false
data nat = zero
| suc (n : nat)
add (m : nat) : nat -> nat = split
zero -> m
suc n -> suc (add m n)
mutual
even : nat -> bool = split
zero -> true
suc n -> odd n
odd : nat -> bool = split
zero -> false
suc n -> even n
isEven (n: nat): U = Path bool (even n) true
isOdd (n: nat): U = Path bool (odd n) true
zeroIsEven : isEven zero = <i> true
evenPlusEvenIsEven : (n:nat) (m:nat) (pn:isEven n) (pm:isEven m) -> isEven (add m n) = split
zero -> \(m : nat) -> \(pn : isEven zero) -> \(pm : isEven m) -> pm
suc n' -> \(m : nat) -> \(pn : isOdd n') -> \(pm : isEven m) ->
evenPlusEvenIsEven (suc n') m pn pm
Вот это почти:
data tt = trivial
data ff =
mutual
evenT : nat -> U = split
zero -> tt
suc n -> oddT n
oddT : nat -> U = split
zero -> ff
suc n -> evenT n
zeroIsEvenT : evenT zero = trivial
evenSuccIsOddT (n: nat) (pn: evenT n): oddT (suc n) = pn
oddSuccIsEvenT (n: nat) (pn: oddT n): evenT (suc n) = pn
evenPredIsOddT: (n: nat) (pn: oddT (suc n)) -> evenT n = split
zero -> \(pn: oddT (suc zero)) -> pn
suc n' -> \(pn: oddT (suc (suc n'))) -> pn
Ни один Path
в ходе работы над этими определениями не пострадал :) можно в принципе даже без data обойтись для tt
и ff
, но это следующий уровень тайп-фу
Ну сформулировать теорему теперь просто:
evenSumIsEven: (n m: nat) (p: evenT n) (q: evenT m) -> evenT (add n m) = undefined
module eveneven where
Path (A : U) (a b : A) : U = PathP (<_> A) a b
data bool = true | false
data nat = zero
| suc (n : nat)
add (m : nat) : nat -> nat = split
zero -> m
suc n -> suc (add m n)
data tt = trivial
data ff =
mutual
evenT : nat -> U = split
zero -> tt
suc n -> oddT n
oddT : nat -> U = split
zero -> ff
suc n -> evenT n
zeroIsEvenT : evenT zero = trivial
evenSuccIsOddT (n: nat) (pn: evenT n): oddT (suc n) = pn
oddSuccIsEvenT (n: nat) (pn: oddT n): evenT (suc n) = pn
evenPredIsOddT: (n: nat) (pn: oddT (suc n)) -> evenT n = split
zero -> \(pn: oddT (suc zero)) -> pn
suc n' -> \(pn: oddT (suc (suc n'))) -> pn
efq (A:U) : ff -> A = split {}
neg (A:U) : U = A -> ff
mutual
evenPlusEvenIsEven : (n m:nat) (pn:evenT n) (pm : evenT m) -> evenT (add m n) = split
zero -> \(m : nat) (pn : evenT zero) (pm : evenT m) -> pm
suc n' -> \(m : nat) (pn : oddT n') (pm : evenT m) -> oddPlusEvenIsOdd n' m pn pm
oddPlusEvenIsOdd : (n m:nat) (pn:oddT n) (pm: evenT m) -> oddT (add m n) = split
zero -> \(m : nat) (pn : oddT zero) (pm : evenT m) -> efq (oddT m) pn
suc n' -> \(m : nat) (pn : evenT n') (pm : evenT m) -> evenPlusEvenIsEven n' m pn pm
oddPlusOddIsEven : (n m:nat) (pn:oddT n) (pm : oddT m) -> evenT (add m n) = split
zero -> \(m : nat) (pn : oddT zero) (pm : oddT m) -> efq (evenT m) pn
suc n' -> \(m : nat) (pn : evenT n') (pm : oddT m) -> evenPlusOddIsOdd n' m pn pm
evenPlusOddIsOdd : (n m:nat) (pn:evenT n) (pm : oddT m) -> oddT (add m n) = split
zero -> \(m : nat) (pn : evenT zero) (pm : oddT m) -> pm
suc n' -> \(m : nat) (pn : oddT n') (pm : oddT m) -> oddPlusOddIsEven n' m pn pm
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.