Created
July 24, 2023 08:11
-
-
Save afrendeiro/dc83d8b09f1e96b6a5af98b3d22a0302 to your computer and use it in GitHub Desktop.
Multi-GPU training with hf-accelerate
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
A simple example of how to use the Accelerator API | |
to train a vision model on a dummy dataset. | |
Accelerator enables training on a single or multiple GPUs. | |
Run once `accelerate config` to set up your configuration file. | |
Run with `accelerate launch test_gpus_accelerate.py` to run on all GPUs. | |
""" | |
import fire | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from torch.utils.data import Dataset | |
from torch.utils.data import DataLoader | |
from accelerate import Accelerator | |
class DummyDataset(Dataset): | |
def __len__(self) -> int: | |
return 1_000_000 | |
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor]: | |
image = torch.rand(3, 224, 224) | |
label = torch.randint(0, 1000, (1,))[0] | |
return image, label | |
def test( | |
model_name: str = "alexnet", | |
batch_size: int = 2048, | |
epochs: int = 3, | |
num_workers: int = 8, | |
): | |
accelerator = Accelerator() | |
device = accelerator.device | |
model = getattr(torchvision.models, model_name)(weights="DEFAULT").to(device) | |
optimizer = torch.optim.Adam(model.parameters()) | |
dataset = DummyDataset() | |
data = DataLoader( | |
dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers | |
) | |
model, optimizer, data = accelerator.prepare(model, optimizer, data) | |
model.train() | |
if accelerator.is_local_main_process: | |
tqdm0 = tqdm(range(epochs), position=0, leave=True, desc="Epochs") | |
tqdm1 = tqdm(data, position=1, leave=False, desc="Batches") | |
else: | |
tqdm0 = range(epochs) | |
tqdm1 = data | |
for epoch in tqdm0: | |
for source, targets in tqdm1: | |
source = source.to(device) | |
targets = targets.to(device) | |
optimizer.zero_grad() | |
output = model(source) | |
loss = F.cross_entropy(output, targets) | |
if accelerator.is_local_main_process: | |
tqdm1.set_postfix({"images": source.shape[0], "loss": loss.item()}) | |
accelerator.backward(loss) | |
optimizer.step() | |
# Valid evaluation | |
if __name__ == "__main__": | |
fire.Fire(test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment