Last active
March 30, 2023 21:39
-
-
Save alphaville/4b6b6cb931e591c7c7b6fb64f15fef52 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Thu Mar 30 20:41:07 2023 | |
@author: Pantelis Sopasakis | |
""" | |
import numpy as np | |
import scipy.special as sp | |
import scipy.stats as ss | |
import pymc3 as pm | |
import arviz as az | |
import matplotlib.pyplot as plt | |
# %% Generate data from dynanimal system | |
# State update function | |
# x(t+1) = f(x(t); a), | |
# where a is an unknown parameter to be estimated | |
# | |
# True parameter value: a = 1 | |
def f(x, a=1): | |
return a * np.sin(x) | |
# Output function, y = g(x) | |
def g(x): | |
return x + 1 | |
# number of data points to be generated | |
N = 8 | |
# Generate output data | |
y = np.zeros((N, 1)) | |
x = 1 | |
for i in range(N): | |
y[i] = g(x) + np.random.normal(0, 0.01) | |
x = f(x, a=0.7) + np.random.normal(0, 0.0001) | |
# %% MCMC | |
with pm.Model() as toy_model: | |
BoundedNormalDist = pm.Bound(pm.Normal, lower=1e-6) | |
x0 = BoundedNormalDist('x0', mu=0.8, sigma=2.0) | |
BoundedBeta = pm.Bound(pm.Beta, lower=1e-6) | |
a = BoundedBeta('alpha', mu=8, sigma=4) | |
x_rand = x0 | |
w = [None] * N | |
for i in range(N): | |
# Process noise: w ~ N(0, 0.01^2) | |
w[i] = pm.Normal(f'w{i}', mu=0, sigma=0.001) | |
# Obtain measurement (without noise) | |
y_rand = pm.Deterministic(f'y{i}', g(x_rand)) | |
# Add noise and measure the output | |
pm.Normal(f'y_meas{i}', mu=y_rand, sigma=0.01, observed=[y[i]]) | |
# Update state: x+ = f(x) + w | |
x_rand = pm.Deterministic(f'x{i+1}', f(x_rand, a) + w[i]) | |
# Create graph of the model (optional step) | |
#gv = pm.model_to_graphviz(toy_model) | |
#gv.format = 'png' | |
#gv.render(filename='sin_system') | |
# Run MCMC | |
with toy_model: | |
# Consider 2000 draws and 4 chains. | |
trace = pm.sample( | |
step = pm.Metropolis(), | |
tune=1200, | |
draws=4000, | |
chains=2, | |
cores=1, | |
return_inferencedata=True | |
) | |
# Plot results | |
# az.plot_trace(data=trace) | |
# plt.show() | |
az.plot_trace(trace.posterior["alpha"]) | |
plt.show() | |
# %% | |
print(az.summary(trace)) | |
# %% | |
az.plot_trace(trace.posterior["alpha"]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment