Created
May 2, 2017 10:51
-
-
Save alphaville/9231cd53ef8ca3e267fc2fe7a7ada49a to your computer and use it in GitHub Desktop.
Projection onto the epigraph of the squared norm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| function [x_, z_, details] = epipr_sqnorm(x,z) | |
| if (x'*x <= z) | |
| x_ = x; z_ = z; | |
| return | |
| end | |
| theta = 1 - 2 * z; | |
| [r, status] = cubic_roots(theta, x); | |
| details.status = status; | |
| % Pick the right root | |
| for i=1:length(r), | |
| x_ = x/(1 + 2*(r(i) - z)); | |
| if abs(norm(x_)^2-r(i)) < 1e-6, | |
| z_ = r(i); | |
| break; | |
| end | |
| end | |
| % Refine the root | |
| [z_, iter, err] = newton_solver(x,theta,z_,5,1e-10); | |
| x_ = x/(1 + 2*(z_ - z)); | |
| details.newton_iter = iter; | |
| details.newton_err = err; | |
| function [r, status] = cubic_roots(theta, x) | |
| b=4*theta; c=theta^2; d=-x'*x; | |
| D = 72*b*c*d - 4*b^3*d +b^2*c^2 - 16*c^3 - 432*d^2; | |
| D0 = b^2 - 12*c; | |
| status.D = D; status.D0 = D0; | |
| if abs(D)<1e-14, | |
| if abs(D0)<1e-14, | |
| % one triple root (we cannot be here!) | |
| r = -b/12; | |
| status.msg = 'one triple root'; | |
| else | |
| % a double root and a single one | |
| r = zeros(2,1); | |
| r(1) = (16*b*c - 144*d - b^3)/(4*D0); % single | |
| r(2) = (36*d - b*c)/(2*D0); % double (cannot be) | |
| status.msg = 'double plus single'; | |
| end | |
| return; | |
| end | |
| r = roots([4 b c d]); % eigenvalues of matrix | |
| function [zsol, i, err] = ... | |
| newton_solver(x,theta,z0,maxit,tolx) | |
| zsol = z0; zsol_prev = z0-1; | |
| for i=1:maxit, | |
| zsol = zsol - ... | |
| (4*zsol ^3 + 4*theta*zsol^2 + theta^2 * zsol -x'*x)... | |
| /(12*zsol^2 + 8*theta*zsol + theta^2); | |
| err = abs(zsol-zsol_prev); | |
| if err<tolx, | |
| return; | |
| end | |
| zsol_prev = zsol; | |
| end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment