I hereby claim:
- I am andersy005 on github.
- I am andersy005 (https://keybase.io/andersy005) on keybase.
- I have a public key ASA6MpC7M7i67D6zZeY9fWDj-1fF_lNTOwjBKhPFQ8Uefwo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
| #!/bin/bash | |
| usage="$(basename "$0") [-h] [-s n] -- program to calculate the answer to life, the universe and everything | |
| where: | |
| -h show this help text | |
| -s set the seed value (default: 42)" | |
| seed=42 | |
| while getopts ':hs:' option; do | |
| case "$option" in |
| name: dask-dev | |
| channels: | |
| - conda-forge | |
| - defaults | |
| dependencies: | |
| - dask | |
| - dask-ml | |
| - numpy | |
| - python=3.6 | |
| - bokeh |
| import pandas as pd | |
| import dask.dataframe as dd | |
| import numpy as np | |
| import dask.array as da | |
| import inspect | |
| from numpydoc.docscrape import NumpyDocString | |
| import pydoc | |
| def maybe_build_signature(obj, name): |
| import dask | |
| import dask.array as da | |
| import dask.dataframe as dd | |
| import sparse | |
| @dask.delayed(pure=True) | |
| def corr_on_chunked(chunk1, chunk2, corr_thresh=0.9): | |
| return sparse.COO.from_numpy((np.dot(chunk1, chunk2.T) > corr_thresh)) | |
| def chunked_corr_sparse_dask(data, chunksize=5000, corr_thresh=0.9): |
| #!/bin/bash | |
| #PBS -N dask-scheduler | |
| #PBS -q economy | |
| #PBS -A NIOW0001 | |
| #PBS -l select=1:ncpus=36:mpiprocs=6:ompthreads=6 | |
| #PBS -l walltime=00:30:00 | |
| #PBS -j oe | |
| # module purge | |
| module load gnu |
| from __future__ import absolute_import, division, print_function | |
| import numpy as np | |
| import xarray as xr | |
| #------------------------------------------------------------------------------- | |
| #-- function | |
| #------------------------------------------------------------------------------- | |
| def weighted_rmsd(da_x,da_y,weights,avg_over_dims=[]): |
| #! /usr/bin/env python | |
| from __future__ import absolute_import, division, print_function | |
| import xarray as xr | |
| import numpy as np | |
| import cftime | |
| xr_open_ds = {'chunks' : {'time':1}, | |
| 'decode_coords' : False, | |
| 'decode_times' : False, | |
| 'data_vars' : 'minimal'} |