Created
December 11, 2017 01:16
-
-
Save andrefs/7fc2c1665edf4ac0ac8fcb605d87fadb to your computer and use it in GitHub Desktop.
Pre-processing the documents
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tm) | |
#################################### | |
# load the corpora and pre process # | |
#################################### | |
economia.train = VCorpus(DirSource('../news/train/economia'), readerControl = list(reader = readPlain, language='pt')) | |
desporto.train = VCorpus(DirSource('../news/train/desporto'), readerControl = list(reader = readPlain, language='pt')) | |
economia.test = VCorpus(DirSource('../news/eval/economia'), readerControl = list(reader = readPlain, language='pt')) | |
desporto.test = VCorpus(DirSource('../news/eval/desporto'), readerControl = list(reader = readPlain, language='pt')) | |
preprocess.simple <- function(d){ | |
d <- tm_map(d, content_transformer(tolower)) | |
d <- tm_map(d, removeWords, stopwords(kind = "pt")) | |
d <- tm_map(d, content_transformer(function(x) iconv(x, to="ASCII//TRANSLIT"))) | |
d <- tm_map(d, removePunctuation, preserve_intra_word_dashes = TRUE) | |
d <- tm_map(d, removeNumbers) | |
d <- tm_map(d, content_transformer(function(x) stemDocument(x, language="pt"))) | |
d <- tm_map(d, stripWhitespace) | |
return(d) | |
} | |
economia.train.p <- preprocess.simple(economia.train) | |
desporto.train.p <- preprocess.simple(desporto.train) | |
economia.test.p <- preprocess.simple(economia.test) | |
desporto.test.p <- preprocess.simple(desporto.test) | |
docs.train = c(economia.train.p, desporto.train.p) | |
docs.test = c(economia.test.p, desporto.test.p) | |
#################### | |
# create data sets # | |
#################### | |
dtm <- DocumentTermMatrix(docs.train, control = list(wordLengths = c(4, 15), bounds = list(global=c(10,Inf), local=c(2,Inf)), weighting = weightTfIdf)) | |
train.d <- as.data.frame(as.matrix(removeSparseTerms(dtm, 0.95))) | |
train.c.vector <- c(rep("economia",length(economia.train)), rep("desporto",length(desporto.train))) | |
train.dc <- cbind(train.d, class=train.c.vector) | |
lexicon <- names(train.d) | |
train.dc <- train.dc[, c(which(information.gain(class~., train.dc)$attr_importance > 0), ncol(train.dc))] | |
test.d <- as.data.frame(as.matrix(DocumentTermMatrix(docs.test, control = list(dictionary = lexicon)))) | |
test.c <- c(rep("economia",length(economia.test)), rep("desporto",length(desporto.test))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment