Last active
October 24, 2016 12:46
-
-
Save apple2373/f940f98fbbac84d35e8d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# this is a quick implementation of http://arxiv.org/abs/1508.06576 | |
# BUT! This is kind of dirty. Lots of hard coding. | |
import numpy as np | |
import math | |
from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers | |
import chainer.functions as Fu | |
from chainer.functions import caffe | |
import chainer | |
import matplotlib.pyplot as plt | |
from scipy.misc import imread, imresize, imsave | |
def readimage(filename): | |
img = imread(filename) | |
img = imresize(img,[224, 224]) | |
img = np.transpose(img,(2,0,1)) | |
img = img.reshape((1,3,224,224)) | |
p_data = np.ascontiguousarray(img,dtype=np.float32) | |
p = Variable(cuda.to_gpu(p_data)) | |
return p | |
def reshape2(conv1_1): | |
k=conv1_1.data.shape[1] | |
pixels=conv1_1.data.shape[2]*conv1_1.data.shape[3] | |
return chainer.functions.reshape(conv1_1,(k,pixels)) | |
# save the image x | |
def save_x(img,filename="output.png"): | |
img = img.reshape((3,224,224)) | |
img = np.transpose(img,(1,2,0)) | |
imsave(filename,img) | |
def forward(x, p, a): | |
conv1_1, conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': x}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
conv1_1G,conv2_1G, conv3_1G, conv4_1G,conv5_1G, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] | |
# | |
conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': p}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1P,conv2_1P, conv3_1P, conv4_1P,conv5_1P, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
# | |
L_content = Fu.mean_squared_error(conv4_1F,conv4_1P)/2 | |
# | |
conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': a}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
conv1_1A,conv2_1A, conv3_1A, conv4_1A,conv5_1A, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0]] | |
# | |
#caution! the deviding number is hard coding! | |
#this part is correspnding to equation (4) in the original paper | |
#to check the current N and M, run the following | |
#[x.data.shape for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] | |
L_style = (Fu.mean_squared_error(conv1_1G,conv1_1A)/(4*64*64*50176*50176) | |
+ Fu.mean_squared_error(conv2_1G,conv2_1A)/(4*128**128*12544*12544) | |
+ Fu.mean_squared_error(conv3_1G,conv3_1A)/(4*256*256*3136*3136) | |
+ Fu.mean_squared_error(conv4_1G,conv4_1A)/(4*512*512*784*784)\ | |
)/4 # this is equal weighting of E_l | |
# | |
ratio = 0.001 #alpha/beta | |
loss = ratio*L_content + L_style | |
return loss | |
#main | |
cuda.init(3)# is GPU ID!! | |
p=readimage('satoshi_fb.png')#read a content image | |
a=readimage('style.png')#read a style image | |
#download a pretraind caffe model from here: https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md | |
func = caffe.CaffeFunction('VGG_ILSVRC_19_layers.caffemodel')#it takes some time. | |
func.to_gpu() | |
x_data=np.random.randn(1,3,224,224).astype(np.float32) | |
x = Variable(cuda.to_gpu(x_data)) | |
x = readimage('imge230.png') # if you want to start from a exsiting image | |
savedir="satoshi_fb_adam" | |
#optimize x(=image) with adam | |
#note we use numpy for optimization | |
alpha=1 | |
beta1=0.9 | |
beta2=0.999 | |
eps=1e-8 | |
v=np.zeros_like(cuda.to_cpu(x.data)) | |
m=np.zeros_like(v) | |
for epoch in xrange(10000): | |
t=0 | |
loss=forward(x,p,a) | |
loss.backward() | |
grad_cuda=x.grad.copy() | |
grad=cuda.to_cpu(grad_cuda) | |
t +=1 | |
m = beta1*m + (1-beta1)*grad | |
v = beta2*v + (1-beta2)*(grad*grad) | |
m_hat=m/(1-np.power(beta1,t)) | |
v_hat=v/(1-np.power(beta2, t)) | |
x.data -= cuda.to_gpu( alpha * m_hat / (np.sqrt(v_hat) + eps) )#back it to cuda | |
with open(savedir+"/log.txt", "a") as f: | |
f.write(str(epoch)+','+str(loss.data)+','+str(np.linalg.norm(grad.data))+'\n') | |
savename = savedir+'/imge'+str(epoch)+'.png' | |
save_x(cuda.to_cpu(x.data),savename) | |
# #optimize x(=image) with momment | |
# momentum= 0.9 | |
# lr=100 | |
# v=np.zeros_like(x.data) | |
# for epoch in xrange(10000): | |
# loss=forward(x,p,a) | |
# loss.backward() | |
# grad=x.grad.copy() | |
# v *= momentum | |
# v -= lr * grad | |
# x.data += v | |
# with open(savedir+"/log.txt", "a") as f: | |
# f.write(str(epoch+315)+','+str(loss.data)+','+str(np.linalg.norm(x.grad))+'\n') | |
# savename = savedir+'/imge'+str(epoch+315)+'.png' | |
# save_x(x.data,savename) |
Thanks for the feedback. You're right. The part should be outside the loop.
I refined the code. Now you can use it also on CPU!
Here it is: https://github.com/apple2373/chainer_stylenet
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
i had to move to cpu because by gpu does not have enough memory :( https://gist.github.com/kylemcdonald/36db8e76a13f76f16c78
also, i think maybe https://gist.github.com/apple2373/f940f98fbbac84d35e8d#file-artnetgpu-py-L42-L49 can be moved outside of the loop, since they only need to be computed once? this might speed up computation a lot.