-
-
Save kylemcdonald/36db8e76a13f76f16c78 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# this is a quick implementation of http://arxiv.org/abs/1508.06576 | |
# BUT! This is kind of dirty. Lots of hard coding. | |
import numpy as np | |
import math | |
from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers | |
import chainer.functions as Fu | |
from chainer.functions import caffe | |
import chainer | |
import matplotlib.pyplot as plt | |
from scipy.misc import imread, imresize, imsave | |
use_gpu = False | |
def readimage(filename): | |
img = imread(filename) | |
img = imresize(img,[224, 224]) | |
img = np.transpose(img,(2,0,1)) | |
img = img.reshape((1,3,224,224)) | |
p_data = np.ascontiguousarray(img,dtype=np.float32) | |
return Variable(cuda.to_gpu(p_data) if use_gpu else p_data) | |
def reshape2(conv1_1): | |
k=conv1_1.data.shape[1] | |
pixels=conv1_1.data.shape[2]*conv1_1.data.shape[3] | |
return chainer.functions.reshape(conv1_1,(k,pixels)) | |
# save the image x | |
def save_x(img,filename='output.png'): | |
img = img.reshape((3,224,224)) | |
img = np.transpose(img,(1,2,0)) | |
imsave(filename,img) | |
def forward(x, p, a): | |
conv1_1, conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': x}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
conv1_1G,conv2_1G, conv3_1G, conv4_1G,conv5_1G, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] | |
# | |
conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': p}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1P,conv2_1P, conv3_1P, conv4_1P,conv5_1P, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
# | |
L_content = Fu.mean_squared_error(conv4_1F,conv4_1P)/2 | |
# | |
conv1_1,conv2_1, conv3_1, conv4_1,conv5_1, = func(inputs={'data': a}, outputs=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']) | |
conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0, = [ reshape2(x) for x in [conv1_1,conv2_1, conv3_1, conv4_1,conv5_1]] | |
conv1_1A,conv2_1A, conv3_1A, conv4_1A,conv5_1A, = [ Fu.matmul(x, x, transa=False, transb=True) for x in [conv1_1A0,conv2_1A0, conv3_1A0, conv4_1A0,conv5_1A0]] | |
# | |
#caution! the deviding number is hard coding! | |
#this part is correspnding to equation (4) in the original paper | |
#to check the current N and M, run the following | |
#[x.data.shape for x in [conv1_1F,conv2_1F, conv3_1F, conv4_1F,conv5_1F]] | |
L_style = (Fu.mean_squared_error(conv1_1G,conv1_1A)/(4*64*64*50176*50176) | |
+ Fu.mean_squared_error(conv2_1G,conv2_1A)/(4*128**128*12544*12544) | |
+ Fu.mean_squared_error(conv3_1G,conv3_1A)/(4*256*256*3136*3136) | |
+ Fu.mean_squared_error(conv4_1G,conv4_1A)/(4*512*512*784*784)\ | |
)/4 # this is equal weighting of E_l | |
# | |
ratio = 0.0001 #alpha/beta | |
loss = ratio*L_content + L_style | |
return loss | |
#main | |
if use_gpu: | |
print('initializing gpu') | |
cuda.init(0)# is GPU ID!! | |
print('loading images') | |
p=readimage('input/tuebingen.jpg')#read a content image | |
a=readimage('input/starry_night.jpg')#read a style image | |
x_data=np.random.randn(1,3,224,224).astype(np.float32) | |
x = Variable(cuda.to_gpu(x_data) if use_gpu else x_data) | |
x = readimage('input/tuebingen.jpg') # if you want to start from a exsiting image | |
print('loading network') | |
#download a pretraind caffe model from here: https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md | |
func = caffe.CaffeFunction('VGG_ILSVRC_19_layers.caffemodel')#it takes some time. | |
if use_gpu: | |
print('moving net to gpu') | |
func.to_gpu() | |
savedir='output' | |
#optimize x(=image) with adam | |
#note we use numpy for optimization | |
alpha=1 | |
beta1=0.9 | |
beta2=0.999 | |
eps=1e-8 | |
v=np.zeros_like(cuda.to_cpu(x.data)) if use_gpu else np.zeros_like(x.data) | |
m=np.zeros_like(v) | |
print('starting gradient descent') | |
for epoch in xrange(10000): | |
t=0 | |
loss=forward(x,p,a) | |
loss.backward() | |
grad = cuda.to_cpu(x.grad.copy()) if use_gpu else x.grad.copy() | |
t +=1 | |
m = beta1*m + (1-beta1)*grad | |
v = beta2*v + (1-beta2)*(grad*grad) | |
m_hat=m/(1-np.power(beta1,t)) | |
v_hat=v/(1-np.power(beta2, t)) | |
if use_gpu: | |
x.data -= cuda.to_gpu( alpha * m_hat / (np.sqrt(v_hat) + eps) )#back it to cuda | |
else: | |
x.data -= ( alpha * m_hat / (np.sqrt(v_hat) + eps) ) | |
with open(savedir+'/log.txt', 'a') as f: | |
f.write(str(epoch)+','+str(loss.data)+','+str(np.linalg.norm(grad.data))+'\n') | |
savename = savedir+'/frames'+str(epoch)+'.png' | |
if use_gpu: | |
save_x(cuda.to_cpu(x.data),savename) | |
else: | |
save_x(x.data, savename) | |
# #optimize x(=image) with momment | |
# momentum= 0.9 | |
# lr=100 | |
# v=np.zeros_like(x.data) | |
# for epoch in xrange(10000): | |
# loss=forward(x,p,a) | |
# loss.backward() | |
# grad=x.grad.copy() | |
# v *= momentum | |
# v -= lr * grad | |
# x.data += v | |
# with open(savedir+'/log.txt', 'a') as f: | |
# f.write(str(epoch+315)+','+str(loss.data)+','+str(np.linalg.norm(x.grad))+'\n') | |
# savename = savedir+'/imge'+str(epoch+315)+'.png' | |
# save_x(x.data,savename) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, I refined the code. According to your advise.Thanks!
https://github.com/apple2373/chainer_stylenet