-
-
Save asif31iqbal/9202653080ce02e1b0f613f02c6c50df to your computer and use it in GitHub Desktop.
an example of pytorch on mnist dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
import torchvision.datasets as dset | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import torch.optim as optim | |
## load mnist dataset | |
use_cuda = torch.cuda.is_available() | |
root = './data' | |
if not os.path.exists(root): | |
os.mkdir(root) | |
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) | |
# if not exist, download mnist dataset | |
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True) | |
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True) | |
batch_size = 100 | |
train_loader = torch.utils.data.DataLoader( | |
dataset=train_set, | |
batch_size=batch_size, | |
shuffle=True) | |
test_loader = torch.utils.data.DataLoader( | |
dataset=test_set, | |
batch_size=batch_size, | |
shuffle=False) | |
print '==>>> total trainning batch number: {}'.format(len(train_loader)) | |
print '==>>> total testing batch number: {}'.format(len(test_loader)) | |
## network | |
class MLPNet(nn.Module): | |
def __init__(self): | |
super(MLPNet, self).__init__() | |
self.fc1 = nn.Linear(28*28, 500) | |
self.fc2 = nn.Linear(500, 256) | |
self.fc3 = nn.Linear(256, 10) | |
def forward(self, x): | |
x = x.view(-1, 28*28) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
def name(self): | |
return "MLP" | |
class LeNet(nn.Module): | |
def __init__(self): | |
super(LeNet, self).__init__() | |
self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
self.fc1 = nn.Linear(4*4*50, 500) | |
self.fc2 = nn.Linear(500, 10) | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = x.view(-1, 4*4*50) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
def name(self): | |
return "LeNet" | |
## training | |
model = LeNet() | |
if use_cuda: | |
model = model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) | |
criterion = nn.CrossEntropyLoss() | |
for epoch in xrange(10): | |
# trainning | |
ave_loss = 0 | |
for batch_idx, (x, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x), Variable(target) | |
out = model(x) | |
loss = criterion(out, target) | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
loss.backward() | |
optimizer.step() | |
if (batch_idx+1) % 100 == 0 or (batch_idx+1) == len(train_loader): | |
print '==>>> epoch: {}, batch index: {}, train loss: {:.6f}'.format( | |
epoch, batch_idx+1, ave_loss) | |
# testing | |
correct_cnt, ave_loss = 0, 0 | |
total_cnt = 0 | |
for batch_idx, (x, target) in enumerate(test_loader): | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x, volatile=True), Variable(target, volatile=True) | |
out = model(x) | |
loss = criterion(out, target) | |
_, pred_label = torch.max(out.data, 1) | |
total_cnt += x.data.size()[0] | |
correct_cnt += (pred_label == target.data).sum() | |
# smooth average | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
if(batch_idx+1) % 100 == 0 or (batch_idx+1) == len(test_loader): | |
print '==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}'.format( | |
epoch, batch_idx+1, ave_loss, correct_cnt * 1.0 / total_cnt) | |
torch.save(model.state_dict(), model.name()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment