-
-
Save xmfbit/b27cdbff68870418bdb8cefa86a2d558 to your computer and use it in GitHub Desktop.
import os | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
import torchvision.datasets as dset | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import torch.optim as optim | |
## load mnist dataset | |
use_cuda = torch.cuda.is_available() | |
root = './data' | |
if not os.path.exists(root): | |
os.mkdir(root) | |
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) | |
# if not exist, download mnist dataset | |
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True) | |
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True) | |
batch_size = 100 | |
train_loader = torch.utils.data.DataLoader( | |
dataset=train_set, | |
batch_size=batch_size, | |
shuffle=True) | |
test_loader = torch.utils.data.DataLoader( | |
dataset=test_set, | |
batch_size=batch_size, | |
shuffle=False) | |
print '==>>> total trainning batch number: {}'.format(len(train_loader)) | |
print '==>>> total testing batch number: {}'.format(len(test_loader)) | |
## network | |
class MLPNet(nn.Module): | |
def __init__(self): | |
super(MLPNet, self).__init__() | |
self.fc1 = nn.Linear(28*28, 500) | |
self.fc2 = nn.Linear(500, 256) | |
self.fc3 = nn.Linear(256, 10) | |
def forward(self, x): | |
x = x.view(-1, 28*28) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
def name(self): | |
return "MLP" | |
class LeNet(nn.Module): | |
def __init__(self): | |
super(LeNet, self).__init__() | |
self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
self.fc1 = nn.Linear(4*4*50, 500) | |
self.fc2 = nn.Linear(500, 10) | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = x.view(-1, 4*4*50) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
def name(self): | |
return "LeNet" | |
## training | |
model = LeNet() | |
if use_cuda: | |
model = model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) | |
criterion = nn.CrossEntropyLoss() | |
for epoch in xrange(10): | |
# trainning | |
ave_loss = 0 | |
for batch_idx, (x, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x), Variable(target) | |
out = model(x) | |
loss = criterion(out, target) | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
loss.backward() | |
optimizer.step() | |
if (batch_idx+1) % 100 == 0 or (batch_idx+1) == len(train_loader): | |
print '==>>> epoch: {}, batch index: {}, train loss: {:.6f}'.format( | |
epoch, batch_idx+1, ave_loss) | |
# testing | |
correct_cnt, ave_loss = 0, 0 | |
total_cnt = 0 | |
for batch_idx, (x, target) in enumerate(test_loader): | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x, volatile=True), Variable(target, volatile=True) | |
out = model(x) | |
loss = criterion(out, target) | |
_, pred_label = torch.max(out.data, 1) | |
total_cnt += x.data.size()[0] | |
correct_cnt += (pred_label == target.data).sum() | |
# smooth average | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
if(batch_idx+1) % 100 == 0 or (batch_idx+1) == len(test_loader): | |
print '==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}'.format( | |
epoch, batch_idx+1, ave_loss, correct_cnt * 1.0 / total_cnt) | |
torch.save(model.state_dict(), model.name()) | |
请问你的代码我运行的结果:
MLP:准确率 0.86左右
LeNet:准确率 0.64左右
你自己运行的时候也是这个结果吗?一般的话只使用一层Softmax全连接准确率也会到达0.90以上的。
@feiaa 你好~当时的代码可能的确有问题。当时写的比较潦草,也没有注意精度。我修改了代码。
现在我的测试结果如下:
MLP:0.977
LeNet:0.990
谢谢你的反馈!
@Xafter how many iterations are those numbers? Are they accuracy or loss?
@xmfbit a typo at Line#101
x, targe = x.cuda(), target.cuda()
->->->
x, target = x.cuda(), target.cuda()
Just a tip, is it 'criterion' instead of 'ceriation' ?
@samuela, it's not redundant because there is relu activation: x = F.relu(self.fc1(x))
Is it necessary to wrap your training data with Variable? We do not need auto_grad active on these objects correct?
Edit: Nevermind, the Variable wrapper is no longer needed after 0.4.0
https://pytorch.org/2018/04/22/0_4_0-migration-guide.html
how to test real hand writing digits which are 28x28 greyscale image.
@zinwalin initially, LeNet5 was meant for image of shape (32, 32)
In order to get the same spatial dimension after C1 (28, 28), you need to change the Conv1. Not sure how this implementation performs as it seems considerably larger in model capacity
line 55 you can see that self.conv1 is
nn.Conv2d(in_channels=1, out_channels=20, kernel_size=(5, 5), stride=1, padding=0)
As your kernel is 5*5 of stride 1 without padding, output shape is equal to (input_shape - 4) on both spatial dimensions
To preserve the spatial shape of (28, 28), you need to use padding=2 :
nn.Conv2d(in_channels=1, out_channels=20, kernel_size=(5, 5), stride=1, padding=2)
In short:
self.conv1 = nn.Conv2d(1, 20, 5, 1, 2)
That being said, you will have to edit the fc accordingly to be compatible with this edit.
The implementation here does not look exactly like the original LeNet5:
The one above
[1@28x28] Input
[20@24x24] CONV1 (5x5), stride 1, pad 0
[20@12x12] POOL1 (2x2) stride 2
[50@8x8] CONV2 (5x5), stride 1, pad 0
[50@4x4] POOL2 (2x2) stride 2
[800] FC
[500] FC
[10] Softmax
Suggested edit (closer to original one in terms of feature map size)
[1@28x28] Input
[20@28x28] CONV1 (5x5), stride 1, pad 2
[20@14x14] POOL1 (2x2) stride 2
[50@10x10] CONV2 (5x5), stride 1, pad 0
[50@5x5] POOL2 (2x2) stride 2
[1250] FC
[500] FC
[10] Softmax
Original one
[1@32x32] Input
[6@28x28] CONV1 (5x5), stride 1, pad 0
[6@14x14] POOL1 (2x2) stride 2
[16@10x10] CONV2 (5x5), stride 1, pad 0
[16@5x5] POOL2 (2x2) stride 2
[120] FC
[84] FC
[10] Softmax
In terms of extracted features, the important figure is the shape after the convolution blocs. So here, the feature maps' size is 50@4x4 compared to 16@5x5 (half the size if you flatten it, but larger individual features) in the original one.
问个问题,想知道为什么对 label 没有进行 one hot 编码,我看了在 pytorch 官方的例子中也没有进行 one hot 编码,这是为什么呢
能不能拜托改成python3?
问个问题,想知道为什么对 label 没有进行 one hot 编码,我看了在 pytorch 官方的例子中也没有进行 one hot 编码,这是为什么呢
PyTorch中的CrossEntropyLoss自带one hot
pytorch 现在已经将原本在 Variable
类中的 grad
data
等属性移动到 Tensor
类中,所以现在(新版本的 pytorch)不需要将 x
& target
这两个 tensor 包装成 Variable
对象了,可以直接用。
^^^ By the way, this is redundant since the composition of two linear operators is just another linear operator.