Last active
March 4, 2023 19:45
-
-
Save xmfbit/b27cdbff68870418bdb8cefa86a2d558 to your computer and use it in GitHub Desktop.
an example of pytorch on mnist dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
import torchvision.datasets as dset | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import torch.optim as optim | |
## load mnist dataset | |
use_cuda = torch.cuda.is_available() | |
root = './data' | |
if not os.path.exists(root): | |
os.mkdir(root) | |
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) | |
# if not exist, download mnist dataset | |
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True) | |
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True) | |
batch_size = 100 | |
train_loader = torch.utils.data.DataLoader( | |
dataset=train_set, | |
batch_size=batch_size, | |
shuffle=True) | |
test_loader = torch.utils.data.DataLoader( | |
dataset=test_set, | |
batch_size=batch_size, | |
shuffle=False) | |
print '==>>> total trainning batch number: {}'.format(len(train_loader)) | |
print '==>>> total testing batch number: {}'.format(len(test_loader)) | |
## network | |
class MLPNet(nn.Module): | |
def __init__(self): | |
super(MLPNet, self).__init__() | |
self.fc1 = nn.Linear(28*28, 500) | |
self.fc2 = nn.Linear(500, 256) | |
self.fc3 = nn.Linear(256, 10) | |
def forward(self, x): | |
x = x.view(-1, 28*28) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
def name(self): | |
return "MLP" | |
class LeNet(nn.Module): | |
def __init__(self): | |
super(LeNet, self).__init__() | |
self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
self.fc1 = nn.Linear(4*4*50, 500) | |
self.fc2 = nn.Linear(500, 10) | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = x.view(-1, 4*4*50) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
def name(self): | |
return "LeNet" | |
## training | |
model = LeNet() | |
if use_cuda: | |
model = model.cuda() | |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) | |
criterion = nn.CrossEntropyLoss() | |
for epoch in xrange(10): | |
# trainning | |
ave_loss = 0 | |
for batch_idx, (x, target) in enumerate(train_loader): | |
optimizer.zero_grad() | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x), Variable(target) | |
out = model(x) | |
loss = criterion(out, target) | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
loss.backward() | |
optimizer.step() | |
if (batch_idx+1) % 100 == 0 or (batch_idx+1) == len(train_loader): | |
print '==>>> epoch: {}, batch index: {}, train loss: {:.6f}'.format( | |
epoch, batch_idx+1, ave_loss) | |
# testing | |
correct_cnt, ave_loss = 0, 0 | |
total_cnt = 0 | |
for batch_idx, (x, target) in enumerate(test_loader): | |
if use_cuda: | |
x, target = x.cuda(), target.cuda() | |
x, target = Variable(x, volatile=True), Variable(target, volatile=True) | |
out = model(x) | |
loss = criterion(out, target) | |
_, pred_label = torch.max(out.data, 1) | |
total_cnt += x.data.size()[0] | |
correct_cnt += (pred_label == target.data).sum() | |
# smooth average | |
ave_loss = ave_loss * 0.9 + loss.data[0] * 0.1 | |
if(batch_idx+1) % 100 == 0 or (batch_idx+1) == len(test_loader): | |
print '==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}'.format( | |
epoch, batch_idx+1, ave_loss, correct_cnt * 1.0 / total_cnt) | |
torch.save(model.state_dict(), model.name()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
pytorch 现在已经将原本在
Variable
类中的grad
data
等属性移动到Tensor
类中,所以现在(新版本的 pytorch)不需要将x
&target
这两个 tensor 包装成Variable
对象了,可以直接用。