-
-
Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.optim as optim | |
from torch.autograd import Variable | |
# (1, 0) => target labels 0+2 | |
# (0, 1) => target labels 1 | |
# (1, 1) => target labels 3 | |
train = [] | |
labels = [] | |
for i in range(10000): | |
category = (np.random.choice([0, 1]), np.random.choice([0, 1])) | |
if category == (1, 0): | |
train.append([np.random.uniform(0.1, 1), 0]) | |
labels.append([1, 0, 1]) | |
if category == (0, 1): | |
train.append([0, np.random.uniform(0.1, 1)]) | |
labels.append([0, 1, 0]) | |
if category == (0, 0): | |
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)]) | |
labels.append([0, 0, 1]) | |
class _classifier(nn.Module): | |
def __init__(self, nlabel): | |
super(_classifier, self).__init__() | |
self.main = nn.Sequential( | |
nn.Linear(2, 64), | |
nn.ReLU(), | |
nn.Linear(64, nlabel), | |
) | |
def forward(self, input): | |
return self.main(input) | |
nlabel = len(labels[0]) # => 3 | |
classifier = _classifier(nlabel) | |
optimizer = optim.Adam(classifier.parameters()) | |
criterion = nn.MultiLabelSoftMarginLoss() | |
epochs = 5 | |
for epoch in range(epochs): | |
losses = [] | |
for i, sample in enumerate(train): | |
inputv = Variable(torch.FloatTensor(sample)).view(1, -1) | |
labelsv = Variable(torch.FloatTensor(labels[i])).view(1, -1) | |
output = classifier(inputv) | |
loss = criterion(output, labelsv) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
losses.append(loss.data.mean()) | |
print('[%d/%d] Loss: %.3f' % (epoch+1, epochs, np.mean(losses))) |
$ python multilabel.py | |
[1/5] Loss: 0.092 | |
[2/5] Loss: 0.005 | |
[3/5] Loss: 0.001 | |
[4/5] Loss: 0.000 | |
[5/5] Loss: 0.000 |
@raghavgoyal14 yes, you're right. I hope it's clear from the labels.append([0, 0, 1])
:)
How exactly would you evaluate your model in the end? The output of the network is a float value between 0 and 1, but you want 1 (true) or 0 (false) as prediction in the end. So you have to find a threshold for each label. How is this done?
I think this code does not work as you'd expect.
As per PyTorch documentation https://pytorch.org/docs/stable/nn.html#multilabelmarginloss the target vector is NOT a multi-hot encoding:
(v.0.1.12) The criterion only considers the first non zero y[j] targets.
(v.0.4.1) The criterion only considers a contiguous block of non-negative targets that starts at the front.
And this can also be verified here https://github.com/pytorch/pytorch/blob/949559552004db317bc5ca53d67f2c62a54383f5/aten/src/THNN/generic/MultiLabelMarginCriterion.c at lines 57 and 65 for example (also please have a look at line 39 and 40 where the range of the target is checked).
In fact, the correct way of denoting a target for class 0+2 (example from line 7) should be to replace line 16:
labels.append([1, 0, 1])
with
labels.append([0,2,-1])
(as a side note, line 20 should have if category == (1, 1):
to match the description at line 9)
I have trouble coding out the accuracy since the prediction variable for normal one label classification requires the max. How do we work our way around this?
Is 0.092 equivalent to 92% or 9.2% for the first iterative loss
Thank you @Renthal. I just wasted 2 hours on this and finally read your comment.
The code in this gist is incorrect. As @Renthal said, the leftmost columns for each example should be the ground truth class indices. The remaining columns should be filled with -1. Of course, each example may belong to different number of classes.
When I change label format with -1 padded
. As is shown in below:
for i in range(10000):
category = (np.random.choice([0, 1]), np.random.choice([0, 1]))
if category == (1, 1):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
# labels.append([1, 0, 1])
labels.append([0, 2, -1])
if category == (1, 0):
train.append([np.random.uniform(0.1, 1), 0])
# labels.append([0, 1, 0])
labels.append([1, -1, -1])
if category == (0, 1):
train.append([0, np.random.uniform(0.1, 1)])
# labels.append([0, 0, 1])
labels.append([2, -1, -1])
if category == (0, 0):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
# labels.append([1, 0, 0])
labels.append([0, -1, -1])
But, I get amazing loss value:
[1/5] Loss: -1262.730
[2/5] Loss: -7461.019
[3/5] Loss: -18611.219
[4/5] Loss: -34584.168
[5/5] Loss: -55333.562
Final Problems: how to decode output logits of multi-class model?
I create custom multi-class loss function, but trained too slowly.
class MultilabelCrossEntropyLoss(nn.Module):
def __init__(self):
super(MultilabelCrossEntropyLoss, self).__init__()
def forward(self, source: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
source = source.sigmoid()
score = -1. * target * source.log() - (1 - target) * torch.log(1-source)
return score.sum()
I got the result:
[1/500] Loss: 1.067
[2/500] Loss: 0.815
[3/500] Loss: 0.722
[4/500] Loss: 0.664
[5/500] Loss: 0.622
[6/500] Loss: 0.591
[7/500] Loss: 0.566
[8/500] Loss: 0.546
[9/500] Loss: 0.529
[10/500] Loss: 0.515
[11/500] Loss: 0.503
[12/500] Loss: 0.492
[13/500] Loss: 0.483
[14/500] Loss: 0.475
[15/500] Loss: 0.468
[16/500] Loss: 0.461
[17/500] Loss: 0.456
[18/500] Loss: 0.450
Why ?
Shouldn't the Line 9 comment be
# (1, 1) => target labels 2
?