Skip to content

Instantly share code, notes, and snippets.

@bartolsthoorn
Created April 29, 2017 12:13
Show Gist options
  • Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
Simple multi-laber classification example with Pytorch and MultiLabelSoftMarginLoss (https://en.wikipedia.org/wiki/Multi-label_classification)
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
# (1, 0) => target labels 0+2
# (0, 1) => target labels 1
# (1, 1) => target labels 3
train = []
labels = []
for i in range(10000):
category = (np.random.choice([0, 1]), np.random.choice([0, 1]))
if category == (1, 0):
train.append([np.random.uniform(0.1, 1), 0])
labels.append([1, 0, 1])
if category == (0, 1):
train.append([0, np.random.uniform(0.1, 1)])
labels.append([0, 1, 0])
if category == (0, 0):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
labels.append([0, 0, 1])
class _classifier(nn.Module):
def __init__(self, nlabel):
super(_classifier, self).__init__()
self.main = nn.Sequential(
nn.Linear(2, 64),
nn.ReLU(),
nn.Linear(64, nlabel),
)
def forward(self, input):
return self.main(input)
nlabel = len(labels[0]) # => 3
classifier = _classifier(nlabel)
optimizer = optim.Adam(classifier.parameters())
criterion = nn.MultiLabelSoftMarginLoss()
epochs = 5
for epoch in range(epochs):
losses = []
for i, sample in enumerate(train):
inputv = Variable(torch.FloatTensor(sample)).view(1, -1)
labelsv = Variable(torch.FloatTensor(labels[i])).view(1, -1)
output = classifier(inputv)
loss = criterion(output, labelsv)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.data.mean())
print('[%d/%d] Loss: %.3f' % (epoch+1, epochs, np.mean(losses)))
$ python multilabel.py
[1/5] Loss: 0.092
[2/5] Loss: 0.005
[3/5] Loss: 0.001
[4/5] Loss: 0.000
[5/5] Loss: 0.000
@erobic
Copy link

erobic commented Feb 18, 2019

Thank you @Renthal. I just wasted 2 hours on this and finally read your comment.

The code in this gist is incorrect. As @Renthal said, the leftmost columns for each example should be the ground truth class indices. The remaining columns should be filled with -1. Of course, each example may belong to different number of classes.

@andreydung
Copy link

andreydung commented Mar 11, 2019

@erobic @Renthal note that he is using MultiLabelSoftMarginLoss, not MultiLabelMarginLoss.

@wj-Mcat
Copy link

wj-Mcat commented Apr 6, 2020

When I change label format with -1 padded. As is shown in below:

for i in range(10000):
    category = (np.random.choice([0, 1]), np.random.choice([0, 1]))

    if category == (1, 1):
        train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
        # labels.append([1, 0, 1])
        labels.append([0, 2, -1])

    if category == (1, 0):
        train.append([np.random.uniform(0.1, 1), 0])
        # labels.append([0, 1, 0])
        labels.append([1, -1, -1])

    if category == (0, 1):
        train.append([0, np.random.uniform(0.1, 1)])
        # labels.append([0, 0, 1])
        labels.append([2, -1, -1])

    if category == (0, 0):
        train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
        # labels.append([1, 0, 0])
        labels.append([0, -1, -1])

But, I get amazing loss value:

[1/5] Loss: -1262.730
[2/5] Loss: -7461.019
[3/5] Loss: -18611.219
[4/5] Loss: -34584.168
[5/5] Loss: -55333.562

Final Problems: how to decode output logits of multi-class model?

@wj-Mcat
Copy link

wj-Mcat commented Apr 7, 2020

I create custom multi-class loss function, but trained too slowly.

class MultilabelCrossEntropyLoss(nn.Module):
    def __init__(self):
        super(MultilabelCrossEntropyLoss, self).__init__()

    def forward(self, source: torch.Tensor, target: torch.Tensor) -> torch.Tensor:

        source = source.sigmoid()

        score = -1. * target * source.log() - (1 - target) * torch.log(1-source)
        return score.sum()

I got the result:

[1/500] Loss: 1.067
[2/500] Loss: 0.815
[3/500] Loss: 0.722
[4/500] Loss: 0.664
[5/500] Loss: 0.622
[6/500] Loss: 0.591
[7/500] Loss: 0.566
[8/500] Loss: 0.546
[9/500] Loss: 0.529
[10/500] Loss: 0.515
[11/500] Loss: 0.503
[12/500] Loss: 0.492
[13/500] Loss: 0.483
[14/500] Loss: 0.475
[15/500] Loss: 0.468
[16/500] Loss: 0.461
[17/500] Loss: 0.456
[18/500] Loss: 0.450

Why ?

@jcfgonc
Copy link

jcfgonc commented Jul 18, 2025

Just to warn future people that this code is wrong. MultiLabelSoftMarginLoss() does not use one hot encoding as shown in this example and stored in the variable labels.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment