Created
April 29, 2017 12:13
-
-
Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
Simple multi-laber classification example with Pytorch and MultiLabelSoftMarginLoss (https://en.wikipedia.org/wiki/Multi-label_classification)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.optim as optim | |
from torch.autograd import Variable | |
# (1, 0) => target labels 0+2 | |
# (0, 1) => target labels 1 | |
# (1, 1) => target labels 3 | |
train = [] | |
labels = [] | |
for i in range(10000): | |
category = (np.random.choice([0, 1]), np.random.choice([0, 1])) | |
if category == (1, 0): | |
train.append([np.random.uniform(0.1, 1), 0]) | |
labels.append([1, 0, 1]) | |
if category == (0, 1): | |
train.append([0, np.random.uniform(0.1, 1)]) | |
labels.append([0, 1, 0]) | |
if category == (0, 0): | |
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)]) | |
labels.append([0, 0, 1]) | |
class _classifier(nn.Module): | |
def __init__(self, nlabel): | |
super(_classifier, self).__init__() | |
self.main = nn.Sequential( | |
nn.Linear(2, 64), | |
nn.ReLU(), | |
nn.Linear(64, nlabel), | |
) | |
def forward(self, input): | |
return self.main(input) | |
nlabel = len(labels[0]) # => 3 | |
classifier = _classifier(nlabel) | |
optimizer = optim.Adam(classifier.parameters()) | |
criterion = nn.MultiLabelSoftMarginLoss() | |
epochs = 5 | |
for epoch in range(epochs): | |
losses = [] | |
for i, sample in enumerate(train): | |
inputv = Variable(torch.FloatTensor(sample)).view(1, -1) | |
labelsv = Variable(torch.FloatTensor(labels[i])).view(1, -1) | |
output = classifier(inputv) | |
loss = criterion(output, labelsv) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
losses.append(loss.data.mean()) | |
print('[%d/%d] Loss: %.3f' % (epoch+1, epochs, np.mean(losses))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$ python multilabel.py | |
[1/5] Loss: 0.092 | |
[2/5] Loss: 0.005 | |
[3/5] Loss: 0.001 | |
[4/5] Loss: 0.000 | |
[5/5] Loss: 0.000 |
When I change label format with -1 padded
. As is shown in below:
for i in range(10000):
category = (np.random.choice([0, 1]), np.random.choice([0, 1]))
if category == (1, 1):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
# labels.append([1, 0, 1])
labels.append([0, 2, -1])
if category == (1, 0):
train.append([np.random.uniform(0.1, 1), 0])
# labels.append([0, 1, 0])
labels.append([1, -1, -1])
if category == (0, 1):
train.append([0, np.random.uniform(0.1, 1)])
# labels.append([0, 0, 1])
labels.append([2, -1, -1])
if category == (0, 0):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
# labels.append([1, 0, 0])
labels.append([0, -1, -1])
But, I get amazing loss value:
[1/5] Loss: -1262.730
[2/5] Loss: -7461.019
[3/5] Loss: -18611.219
[4/5] Loss: -34584.168
[5/5] Loss: -55333.562
Final Problems: how to decode output logits of multi-class model?
I create custom multi-class loss function, but trained too slowly.
class MultilabelCrossEntropyLoss(nn.Module):
def __init__(self):
super(MultilabelCrossEntropyLoss, self).__init__()
def forward(self, source: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
source = source.sigmoid()
score = -1. * target * source.log() - (1 - target) * torch.log(1-source)
return score.sum()
I got the result:
[1/500] Loss: 1.067
[2/500] Loss: 0.815
[3/500] Loss: 0.722
[4/500] Loss: 0.664
[5/500] Loss: 0.622
[6/500] Loss: 0.591
[7/500] Loss: 0.566
[8/500] Loss: 0.546
[9/500] Loss: 0.529
[10/500] Loss: 0.515
[11/500] Loss: 0.503
[12/500] Loss: 0.492
[13/500] Loss: 0.483
[14/500] Loss: 0.475
[15/500] Loss: 0.468
[16/500] Loss: 0.461
[17/500] Loss: 0.456
[18/500] Loss: 0.450
Why ?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you @Renthal. I just wasted 2 hours on this and finally read your comment.
The code in this gist is incorrect. As @Renthal said, the leftmost columns for each example should be the ground truth class indices. The remaining columns should be filled with -1. Of course, each example may belong to different number of classes.