Last active
October 22, 2024 10:22
-
-
Save bigsnarfdude/2701fce6c2af15e3bf3312ab8655bbab to your computer and use it in GitHub Desktop.
qlora mlx-examples mistral fine tune
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# | |
# Instructions can be found https://github.com/ml-explore/mlx-examples/tree/main/lora | |
# | |
# | |
user@mbp lora % curl -O https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-v0.1.tar | |
% Total % Received % Xferd Average Speed Time Time Time Current | |
Dload Upload Total Spent Left Speed | |
100 13.4G 100 13.4G 0 0 29.1M 0 0:07:53 0:07:53 --:--:-- 31.6M | |
user@mbp lora % tar -xf mistral-7B-v0.1.tar | |
user@mbp lora % python3 convert.py --torch-path mistral-7B-v0.1 --mlx-path q_converted_mistral -q | |
[INFO] Quantizing | |
user@mbp lora % python3 lora.py --model q_converted_mistral --train --iters 600 | |
Loading pretrained model | |
Total parameters 1244.041M | |
Trainable parameters 1.704M | |
Loading datasets | |
Training | |
Iter 1: Val loss 2.439, Val took 66.208s | |
Iter 10: Train loss 2.415, It/sec 0.253, Tokens/sec 101.631 | |
Iter 20: Train loss 2.266, It/sec 0.238, Tokens/sec 96.615 | |
Iter 30: Train loss 2.146, It/sec 0.228, Tokens/sec 93.642 | |
Iter 40: Train loss 1.914, It/sec 0.253, Tokens/sec 98.129 | |
Iter 50: Train loss 1.642, It/sec 0.247, Tokens/sec 98.293 | |
Iter 60: Train loss 1.444, It/sec 0.248, Tokens/sec 98.317 | |
Iter 70: Train loss 1.435, It/sec 0.216, Tokens/sec 87.692 | |
Iter 80: Train loss 1.440, It/sec 0.230, Tokens/sec 92.337 | |
Iter 90: Train loss 1.399, It/sec 0.264, Tokens/sec 100.153 | |
Iter 100: Train loss 1.409, It/sec 0.250, Tokens/sec 95.332 | |
Iter 110: Train loss 1.298, It/sec 0.262, Tokens/sec 101.486 | |
Iter 120: Train loss 1.289, It/sec 0.241, Tokens/sec 94.295 | |
Iter 130: Train loss 1.283, It/sec 0.242, Tokens/sec 95.730 | |
Iter 140: Train loss 1.305, It/sec 0.246, Tokens/sec 95.735 | |
Iter 150: Train loss 1.296, It/sec 0.226, Tokens/sec 91.946 | |
Iter 160: Train loss 1.230, It/sec 0.240, Tokens/sec 94.467 | |
Iter 170: Train loss 1.237, It/sec 0.241, Tokens/sec 99.233 | |
Iter 180: Train loss 1.226, It/sec 0.263, Tokens/sec 95.467 | |
Iter 190: Train loss 1.241, It/sec 0.244, Tokens/sec 97.599 | |
Iter 200: Train loss 1.326, It/sec 0.250, Tokens/sec 95.227 |
python3 lora.py --model q_converted_mistral --adapter-file adapters.npz --num-tokens 50 --prompt "table: 1-10015132-16
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
Q: What is terrence ross' nationality
A: "
Loading pretrained model
Total parameters 1244.041M
Trainable parameters 1.704M
Loading datasets
Generating
table: 1-10015132-16
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
Q: What is terrence ross' nationality
A: SELECT MAX No. FROM 1-10015132-16 WHERE Nationality = 'Canadian'� columns: Player, No., Nationality, Position, Years in Toronto, School/Club
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
python3 lora.py --model q_converted_mistral --adapter-file adapters.npz --test
Loading pretrained model
Total parameters 1244.041M
Trainable parameters 1.704M
Loading datasets
Testing
Test loss 1.382, Test ppl 3.984.