-
-
Save bigsnarfdude/d811e31ee17495f82f10db12651ae82d to your computer and use it in GitHub Desktop.
import cv2 | |
import numpy as np | |
# read and scale down image | |
# wget https://bigsnarf.files.wordpress.com/2017/05/hammer.png #black and white | |
# wget https://i1.wp.com/images.hgmsites.net/hug/2011-volvo-s60_100323431_h.jpg | |
img = cv2.pyrDown(cv2.imread('2011-volvo-s60_100323431_h.jpg', cv2.IMREAD_UNCHANGED)) | |
# threshold image | |
ret, threshed_img = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), | |
127, 255, cv2.THRESH_BINARY) | |
# find contours and get the external one | |
contours, hier = cv2.findContours(threshed_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
#image, contours, hier = cv2.findContours(threshed_img, cv2.RETR_TREE, | |
# cv2.CHAIN_APPROX_SIMPLE) | |
# with each contour, draw boundingRect in green | |
# a minAreaRect in red and | |
# a minEnclosingCircle in blue | |
for c in contours: | |
# get the bounding rect | |
x, y, w, h = cv2.boundingRect(c) | |
# draw a green rectangle to visualize the bounding rect | |
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) | |
# get the min area rect | |
rect = cv2.minAreaRect(c) | |
box = cv2.boxPoints(rect) | |
# convert all coordinates floating point values to int | |
box = np.int0(box) | |
# draw a red 'nghien' rectangle | |
cv2.drawContours(img, [box], 0, (0, 0, 255)) | |
# finally, get the min enclosing circle | |
(x, y), radius = cv2.minEnclosingCircle(c) | |
# convert all values to int | |
center = (int(x), int(y)) | |
radius = int(radius) | |
# and draw the circle in blue | |
img = cv2.circle(img, center, radius, (255, 0, 0), 2) | |
print(len(contours)) | |
cv2.drawContours(img, contours, -1, (255, 255, 0), 1) | |
cv2.imshow("contours", img) | |
cv2.imshow("contours", img) | |
while True: | |
key = cv2.waitKey(1) | |
if key == 27: #ESC key to break | |
break | |
cv2.destroyAllWindows() |
How could i make this work when i use a program that retrieves multiple images from google and can pass them through the process?
Cheers
thank you very muchhhh
I get the following error when using the provided hammer.png image:
`---------------------------------------------------------------------------
error Traceback (most recent call last)
in
3
4 # threshold image
----> 5 ret, threshed_img = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
6 # find contours and get the external one
7 image, contours, hier = cv2.findContours(threshed_img, cv2.RETR_TREE,
error: OpenCV(3.4.2) /Users/travis/build/skvark/opencv-python/opencv/modules/imgproc/src/color.hpp:253: error: (-215:Assertion failed) VScn::contains(scn) && VDcn::contains(dcn) && VDepth::contains(depth) in function 'CvtHelper'
`
Which version of opencv are you using?
I am having an issue with line 49. Has anyone resolved this?
latest revision - works/tested with python 3.7.1 and open CV 4.1.0
import cv2
import numpy as np
image = cv2.imread('d.jpg',-1)
paper = cv2.resize(image,(500,500))
ret, thresh_gray = cv2.threshold(cv2.cvtColor(paper, cv2.COLOR_BGR2GRAY),
200, 255, cv2.THRESH_BINARY)
image, contours, hier = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for c in contours:
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
# convert all coordinates floating point values to int
box = np.int0(box)
# draw a green 'nghien' rectangle
cv2.drawContours(paper, [box], 0, (0, 255, 0),1)
cv2.imshow('paper', paper)
cv2.imwrite('paper.jpg',paper)
I tried the above code for zebra line detection in an image.It shows output like this.
.By I need to detect the entire block of zebra crossing .how is to be done?
hi i was using the code to get a bounding box over shaded objects in a picture.for eg, in the pic included, the car is shaded in red and i'd just like the bounding box to be over the car. however with this code the bounding box is generated over everything. how do i tweak it to get what i want, which is just a bounding box over the objects in the pic that is shaded?.
Tôi nghĩ rằng bạn thử so sánh các diện tích các đường bao đã thu được trên ảnh:
Đây là mã của tôi:
def get_contours(img_read_img, area_min_thresh=AREA):
img_gray = cv2.cvtColor(img_read_img, cv2.COLOR_BGR2GRAY)
invert_img = cv2.bitwise_not(img_gray)
retval, im_bw = cv2.threshold(invert_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours, hier = cv2.findContours(im_bw, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = list(filter(lambda x: cv2.contourArea(x) > area_min_thresh, contours))
# img_contours = np.zeros(img_read_img.shape)
# cv2.drawContours(img_contours, contours, -1, (0, 255, 0), 3)
max_area = cv2.contourArea(contours[0])
max_id = 0
for i, c in enumerate(contours):
area = cv2.contourArea(c)
if area > max_area:
max_area = area
max_id = i
max_contours = contours[max_id]
cv2.drawContours(img_read_img, [max_contours], -1, (0, 0, 255), 2)
# cv2.imshow("contour", img_read_img)
# cv2.waitKey(0)
return img_read_img
Can it work for 2 page PDF?
verrrrrrrrrrrrrry good man !