Created
April 20, 2016 15:10
-
-
Save braingineer/727f9b3d7fbcd8a0f0d8cd1232d24c29 to your computer and use it in GitHub Desktop.
Dense layer being rebuilt by TimeDistributed
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
from keras.layers import Dense, TimeDistributed | |
import numpy as np | |
import theano | |
def shared(x): | |
x_ = theano.shared(x) | |
x_._keras_shape = x.shape | |
return x_ | |
dense_func = Dense(1) | |
dense_func.build((1,5)) | |
d1 = shared(np.arange(20).reshape(1,4,5).astype(np.float32)) | |
print("Dense function is built:", dense_func.built) | |
for i in range(2): | |
print("round", i) | |
print("="*20) | |
print("Dense function is built:", dense_func.built) | |
print("-"*10) | |
print("dense layer weights:\n\t", np.array(dense_func.W.eval()).flatten()) | |
print("-"*10) | |
o1 = TimeDistributed(dense_func)(d1).eval().flatten() | |
o2 = TimeDistributed(dense_func)(d1).eval().flatten() | |
print("out1:\n\t", o1) | |
print("out2:\n\t", o2) | |
print("With marking..") | |
dense_func = Dense(1) | |
dense_func.build((1,5)) | |
dense_func.built = True | |
d1 = shared(np.arange(20).reshape(1,4,5).astype(np.float32)) | |
print("Dense function is built:", dense_func.built) | |
for i in range(2): | |
print("round", i) | |
print("="*20) | |
print("Dense function is built:", dense_func.built) | |
print("-"*10) | |
print("dense layer weights:\n\t", np.array(dense_func.W.eval()).flatten()) | |
print("-"*10) | |
o1 = TimeDistributed(dense_func)(d1).eval().flatten() | |
o2 = TimeDistributed(dense_func)(d1).eval().flatten() | |
print("out1:\n\t", o1) | |
print("out2:\n\t", o2) | |
""" | |
OUTPUT: | |
Using Theano backend. | |
Using gpu device 0: GeForce GTX 980 (CNMeM is disabled, CuDNN 3007) | |
Dense function is built: False | |
round 0 | |
==================== | |
Dense function is built: False | |
---------- | |
dense layer weights: | |
[-0.16217758 -0.51210076 0.93307728 0.96743965 0.14936669] | |
---------- | |
out1: | |
[ 0.00654554 0.54339099 1.08023643 1.61708248] | |
out2: | |
[ -1.07750547 -5.27540827 -9.47331142 -13.6712141 ] | |
round 1 | |
==================== | |
Dense function is built: False | |
---------- | |
dense layer weights: | |
[-0.44987136 -0.24459462 0.08279426 0.08686388 -0.31477275] | |
---------- | |
out1: | |
[ 2.91354108 14.76345634 26.6133728 38.46329117] | |
out2: | |
[ 4.15778255 10.96348095 17.76917839 24.57487679] | |
With marking.. | |
Dense function is built: True | |
round 0 | |
==================== | |
Dense function is built: True | |
---------- | |
dense layer weights: | |
[ 0.22700137 0.43190205 0.57331359 -0.61278355 -0.56270558] | |
---------- | |
out1: | |
[ -5.25695324 -18.86313438 -32.46931458 -46.07549286] | |
out2: | |
[ 0.62759721 3.35421753 6.0808382 8.80745888] | |
round 1 | |
==================== | |
Dense function is built: True | |
---------- | |
dense layer weights: | |
[ 0.21340257 0.11011547 0.6671744 -0.9646064 0.51923805] | |
---------- | |
out1: | |
[ -1.90755129 -4.99689198 -8.08623314 -11.17557335] | |
out2: | |
[ -3.08132529 -7.85123491 -12.62114429 -17.39105415] | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment