Created
April 11, 2016 15:16
-
-
Save braingineer/fe8140cbb2258eb7574bf00fa9001918 to your computer and use it in GitHub Desktop.
Tensor Accuracy w/ Mask
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import theano.tensor as T | |
pred = np.arange(30, dtype=np.float32).reshape(2,3,5) | |
pred /= pred.sum(axis=-1, keepdims=True) | |
### target matrix to match pred | |
target1 = np.ones_like(pred) | |
target1[:,:,:-1] = 0 | |
### target matrix to match mask | |
target2 = np.ones_like(pred) | |
target2[:,:,:-1] = 0 | |
target2[0,-1,-1] = 0 | |
### mask | |
mask = np.ones(pred.shape[:-1]) | |
mask[0,-1] = 0 | |
mask | |
# preserve last dimension | |
flat_shape = lambda mat: (reduce(lambda x,y: x*y, mat.shape[:-1]), mat.shape[-1]) | |
F_flat = lambda mat: T.reshape(mat, flat_shape(mat)) | |
# compare two matrices | |
F_comp = lambda mat1, mat2: T.eq(T.argmax(mat1,axis=-1), T.argmax(mat2,axis=-1)) | |
# mask the matrix | |
F_mask = lambda mat, mask: mat[mask.flatten().nonzero()] | |
# get the mean | |
F_mean = lambda mat: T.mean(mat) | |
F_score1 = lambda mat1, mat2: F_mean(F_comp(mat1, mat2)) | |
F_score2 = lambda mat1,mat2, mask: F_mean(F_mask(F_comp(F_flat(mat1), F_flat(mat2)), mask)) | |
F_score1(pred, target1).eval() ## returns 1.0 | |
F_score1(pred, target2).eval() ## returns 0.83 | |
F_score2(pred, target1, mask).eval() ## returns 1.0 | |
F_score2(pred, target2, mask).eval() ## returns 1.0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment