Last active
March 28, 2017 14:37
-
-
Save bruceoutdoors/5b81f5e1f124998d6d4382e145a39852 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <complex> | |
#include <cmath> | |
#include <iomanip> | |
#include <vector> | |
#include <algorithm> | |
#include <map> | |
#include <tuple> | |
using namespace std; | |
typedef complex<double> xd; | |
typedef vector<double> dvec; | |
typedef vector<xd> xvec; | |
const double PI = acos(0) * 2; | |
const xd J(0, 1); // sqrt(-1) | |
class FFT | |
{ | |
public: | |
static dvec convolve(const dvec &a, const dvec &b) | |
{ | |
// degree of resulting polynomial = size of resulting array | |
size_t deg = a.size() + b.size() - 1; | |
// transform array size must be in power of 2 for FFT | |
size_t N = 1; | |
while (N < deg) N <<= 1; | |
// precompute omega, if not yet done so: | |
for (int i = N; i > 0; i >>= 1) { | |
if (omega.find({i, 0}) != omega.end()) break; | |
int p = i / 2; | |
for (double j = 1 - p; j < p; ++j) { | |
omega[{i, j}] = exp((2. * PI * J * j) / (double)i); | |
} | |
} | |
xvec acof(N), bcof(N); | |
copy(a.begin(), a.end(), acof.begin()); | |
copy(b.begin(), b.end(), bcof.begin()); | |
xvec apv, bpv, cpv(N); | |
// evaluation: fft | |
apv = transform(acof); | |
bpv = transform(bcof); | |
// point-wise multiplcation | |
for (size_t i = 0; i < N; ++i) { | |
cpv[i] = apv[i] * bpv[i]; | |
} | |
// interpolation: ifft | |
dvec c(deg); | |
cpv = transform(cpv, true); | |
for (size_t i = 0; i < deg; ++i) { | |
c[i] = cpv[i].real() / N; | |
} | |
return c; | |
} | |
private: | |
static map<pair<size_t, int>, xd> omega; | |
static xvec transform(xvec &s, bool inv = false) | |
{ | |
double N = s.size(); | |
if (N == 1) return s; | |
int halfN = N / 2; | |
xvec se, so; | |
se.reserve(halfN); | |
so.reserve(halfN); | |
for (int i = 0; i < N; i += 2) { | |
se.push_back(s[i]); // even | |
so.push_back(s[i + 1]); // odd | |
} | |
se = transform(se, inv); | |
so = transform(so, inv); | |
for (double m = 0; m < halfN; ++m) { | |
xd omso = omega[{N, inv ? m : -m}] * so[m]; | |
s[m] = se[m] + omso; | |
s[m + halfN] = se[m] - omso; | |
} | |
return s; | |
} | |
}; | |
map<pair<size_t, int>, xd> FFT::omega; | |
int main() | |
{ | |
dvec a = { 6, 7, -10, 9 }; | |
dvec b = { -2, 0, 4, -5 }; | |
dvec c = FFT::convolve(a, b); | |
// Output: -12 -14 44 -20 -75 86 -45 | |
for (const auto &t : c) cout << t << ' '; | |
cout << endl; | |
a = { 6, 7, -10, 9, 6, 7, -10, 9 }; | |
b = { -2, 0, 4, -5, -2, 0, 4, -5 }; | |
c = FFT::convolve(a, b); | |
// Output: -12 -14 44 -20 -99 58 43 -40 -162 158 -46 -20 -75 86 -45 | |
for (const auto &t : c) cout << t << ' '; | |
cout << endl; | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment