Skip to content

Instantly share code, notes, and snippets.

@castano
Last active May 17, 2023 00:37
Show Gist options
  • Save castano/d83167cc8490070dc8f322004f057024 to your computer and use it in GitHub Desktop.
Save castano/d83167cc8490070dc8f322004f057024 to your computer and use it in GitHub Desktop.
// This code is in the public domain -- Ignacio Castaño <[email protected]>
#include "Sphere.h"
#include "Vector.inl"
#include "Box.inl"
#include <float.h> // FLT_MAX
using namespace nv;
const float radiusEpsilon = 1e-4f;
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1) {
if (p0 == p1) *this = Sphere(p0);
else {
center = (p0 + p1) * 0.5f;
radius = length(p0 - center) + radiusEpsilon;
float d0 = length(p0 - center);
float d1 = length(p1 - center);
nvDebugCheck(equal(d0, radius - radiusEpsilon));
nvDebugCheck(equal(d1, radius - radiusEpsilon));
}
}
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2) {
if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2);
else if (p1 == p2) *this = Sphere(p0, p2);
else {
Vector3 a = p1 - p0;
Vector3 b = p2 - p0;
Vector3 c = cross(a, b);
float denominator = 2.0f * lengthSquared(c);
if (!isZero(denominator)) {
Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
center = p0 + d;
radius = length(d) + radiusEpsilon;
float d0 = length(p0 - center);
float d1 = length(p1 - center);
float d2 = length(p2 - center);
nvDebugCheck(equal(d0, radius - radiusEpsilon));
nvDebugCheck(equal(d1, radius - radiusEpsilon));
nvDebugCheck(equal(d2, radius - radiusEpsilon));
}
else {
// @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points.
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
Sphere s0(p1, p2);
float d0 = distanceSquared(s0, p0);
if (d0 > 0) s0.radius = NV_FLOAT_MAX;
Sphere s1(p0, p2);
float d1 = distanceSquared(s1, p1);
if (d1 > 0) s1.radius = NV_FLOAT_MAX;
Sphere s2(p0, p1);
float d2 = distanceSquared(s2, p2);
if (d2 > 0) s1.radius = NV_FLOAT_MAX;
if (s0.radius < s1.radius && s0.radius < s2.radius) {
center = s0.center;
radius = s0.radius;
}
else if (s1.radius < s2.radius) {
center = s1.center;
radius = s1.radius;
}
else {
center = s2.center;
radius = s2.radius;
}
}
}
}
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3) {
if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3);
else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3);
else if (p2 == p3) *this = Sphere(p0, p1, p2);
else {
// @@ This only works if the points are not coplanar!
Vector3 a = p1 - p0;
Vector3 b = p2 - p0;
Vector3 c = p3 - p0;
float denominator = 2.0f * dot(c, cross(a, b)); // triple product.
if (!isZero(denominator)) {
Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator;
center = p0 + d;
radius = length(d) + radiusEpsilon;
float d0 = length(p0 - center);
float d1 = length(p1 - center);
float d2 = length(p2 - center);
float d3 = length(p3 - center);
nvDebugCheck(equal(d0, radius - radiusEpsilon));
nvDebugCheck(equal(d1, radius - radiusEpsilon));
nvDebugCheck(equal(d2, radius - radiusEpsilon));
nvDebugCheck(equal(d3, radius - radiusEpsilon));
}
else {
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest.
Sphere s0(p1, p2, p3);
float d0 = distanceSquared(s0, p0);
if (d0 > 0) s0.radius = NV_FLOAT_MAX;
Sphere s1(p0, p2, p3);
float d1 = distanceSquared(s1, p1);
if (d1 > 0) s1.radius = NV_FLOAT_MAX;
Sphere s2(p0, p1, p3);
float d2 = distanceSquared(s2, p2);
if (d2 > 0) s2.radius = NV_FLOAT_MAX;
Sphere s3(p0, p1, p2);
float d3 = distanceSquared(s3, p3);
if (d3 > 0) s2.radius = NV_FLOAT_MAX;
if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) {
center = s0.center;
radius = s0.radius;
}
else if (s1.radius < s2.radius && s1.radius < s3.radius) {
center = s1.center;
radius = s1.radius;
}
else if (s1.radius < s3.radius) {
center = s2.center;
radius = s2.radius;
}
else {
center = s3.center;
radius = s3.radius;
}
}
}
}
float nv::distanceSquared(const Sphere & sphere, const Vector3 & point) {
return lengthSquared(sphere.center - point) - square(sphere.radius);
}
// Implementation of "MiniBall" based on:
// http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml
static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0) {
Sphere MB;
switch(b) {
case 0:
MB = Sphere(*P[0]);
break;
case 1:
MB = Sphere(*P[-1]);
break;
case 2:
MB = Sphere(*P[-1], *P[-2]);
break;
case 3:
MB = Sphere(*P[-1], *P[-2], *P[-3]);
break;
case 4:
MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]);
return MB;
}
for (uint i = 0; i < p; i++) {
if (distanceSquared(MB, *P[i]) > 0) { // Signed square distance to sphere
for (uint j = i; j > 0; j--) {
swap(P[j], P[j-1]);
}
MB = recurseMini(P + 1, i, b + 1);
}
}
return MB;
}
static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) {
for (uint i = 0; i < pointCount; i++) {
if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) {
return false;
}
}
return true;
}
Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount) {
nvDebugCheck(pointArray != NULL);
nvDebugCheck(pointCount > 0);
const Vector3 **L = new const Vector3*[pointCount];
for (uint i = 0; i < pointCount; i++) {
L[i] = &pointArray[i];
}
Sphere sphere = recurseMini(L, pointCount);
delete [] L;
nvDebugCheck(allInside(sphere, pointArray, pointCount));
return sphere;
}
// Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems"
Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount) {
nvDebugCheck(pointArray != NULL);
nvDebugCheck(pointCount > 0);
Vector3 xmin, xmax, ymin, ymax, zmin, zmax;
xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0];
// FIRST PASS: find 6 minima/maxima points
xmin.x = ymin.y = zmin.z = FLT_MAX;
xmax.x = ymax.y = zmax.z = -FLT_MAX;
for (uint i = 0; i < pointCount; i++) {
const Vector3 & p = pointArray[i];
if (p.x < xmin.x) xmin = p;
if (p.x > xmax.x) xmax = p;
if (p.y < ymin.y) ymin = p;
if (p.y > ymax.y) ymax = p;
if (p.z < zmin.z) zmin = p;
if (p.z > zmax.z) zmax = p;
}
float xspan = lengthSquared(xmax - xmin);
float yspan = lengthSquared(ymax - ymin);
float zspan = lengthSquared(zmax - zmin);
// Set points dia1 & dia2 to the maximally separated pair.
Vector3 dia1 = xmin;
Vector3 dia2 = xmax;
float maxspan = xspan;
if (yspan > maxspan) {
maxspan = yspan;
dia1 = ymin;
dia2 = ymax;
}
if (zspan > maxspan) {
dia1 = zmin;
dia2 = zmax;
}
// |dia1-dia2| is a diameter of initial sphere
// calc initial center
Sphere sphere;
sphere.center = (dia1 + dia2) / 2.0f;
// calculate initial radius**2 and radius
float rad_sq = lengthSquared(dia2 - sphere.center);
sphere.radius = sqrtf(rad_sq);
// SECOND PASS: increment current sphere
for (uint i = 0; i < pointCount; i++) {
const Vector3 & p = pointArray[i];
float old_to_p_sq = lengthSquared(p - sphere.center);
if (old_to_p_sq > rad_sq) { // do r**2 test first
// this point is outside of current sphere
float old_to_p = sqrtf(old_to_p_sq);
// calc radius of new sphere
sphere.radius = (sphere.radius + old_to_p) / 2.0f;
rad_sq = sphere.radius * sphere.radius; // for next r**2 compare
float old_to_new = old_to_p - sphere.radius;
// calc center of new sphere
sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p;
}
}
nvDebugCheck(allInside(sphere, pointArray, pointCount));
return sphere;
}
static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) {
float maxRadius2 = 0;
for (uint i = 0; i < pointCount; i++) {
const Vector3 & p = pointArray[i];
float r2 = lengthSquared(center - p);
if (r2 > maxRadius2) {
maxRadius2 = r2;
}
}
return sqrtf(maxRadius2) + radiusEpsilon;
}
Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount) {
nvDebugCheck(pointArray != NULL);
nvDebugCheck(pointCount > 0);
Box box;
box.clearBounds();
for (uint i = 0; i < pointCount; i++) {
box.addPointToBounds(pointArray[i]);
}
Sphere sphere;
sphere.center = box.center();
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
nvDebugCheck(allInside(sphere, pointArray, pointCount));
return sphere;
}
static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) {
nvDebugCheck(pointCount > 0);
uint mini = 0;
uint maxi = 0;
float minDist = FLT_MAX;
float maxDist = -FLT_MAX;
for (uint i = 0; i < pointCount; i++) {
float d = dot(dir, pointArray[i]);
if (d < minDist) {
minDist = d;
mini = i;
}
if (d > maxDist) {
maxDist = d;
maxi = i;
}
}
nvDebugCheck(minDist != FLT_MAX);
nvDebugCheck(maxDist != -FLT_MAX);
*minPoint = pointArray[mini];
*maxPoint = pointArray[maxi];
}
// EPOS algorithm based on:
// http://www.ep.liu.se/ecp/034/009/ecp083409.pdf
Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount) {
nvDebugCheck(pointArray != NULL);
nvDebugCheck(pointCount > 0);
Vector3 extremalPoints[6];
// Compute 6 extremal points.
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
Sphere sphere = miniBall(extremalPoints, 6);
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
nvDebugCheck(allInside(sphere, pointArray, pointCount));
return sphere;
}
Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount) {
nvDebugCheck(pointArray != NULL);
nvDebugCheck(pointCount > 0);
Vector3 extremalPoints[14];
// Compute 14 extremal points.
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1);
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3);
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5);
float d = sqrtf(1.0f/3.0f);
computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7);
computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9);
computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11);
computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13);
Sphere sphere = miniBall(extremalPoints, 14);
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount);
nvDebugCheck(allInside(sphere, pointArray, pointCount));
return sphere;
}
// This code is in the public domain -- Ignacio Castaño <[email protected]>
#pragma once
#ifndef NV_MATH_SPHERE_H
#define NV_MATH_SPHERE_H
#include "Vector.h"
namespace nv
{
class Sphere
{
public:
Sphere() {}
Sphere(Vector3::Arg center, float radius) : center(center), radius(radius) {}
Sphere(Vector3::Arg center) : center(center), radius(0.0f) {}
Sphere(Vector3::Arg p0, Vector3::Arg p1);
Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2);
Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3);
Vector3 center;
float radius;
};
// Returns negative values if point is inside.
float distanceSquared(const Sphere & sphere, const Vector3 &point);
// Welz's algorithm. Fairly slow, recursive implementation uses large stack.
Sphere miniBall(const Vector3 * pointArray, uint pointCount);
Sphere approximateSphere_Ritter(const Vector3 * pointArray, uint pointCount);
Sphere approximateSphere_AABB(const Vector3 * pointArray, uint pointCount);
Sphere approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount);
Sphere approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount);
} // nv namespace
#endif // NV_MATH_SPHERE_H
@maj-tom
Copy link

maj-tom commented May 13, 2023

There's a bug: line 133 should be else if (s2.radius < s3.radius) { since you compare s1 to s3 in the previous condition.
There's a bigger bug though: the current corner case handling (compute all the spheres with one less point and invalidate) can fail and then you have all spheres invalidated, with the last return returning a sphere that has a float-max radius! The problem is that when you create all the n-1 point spheres, it's possible that they ALL exclude the extra point. I see this a lot when running similar code on large meshes. An example of a failure case is a needle-like (nearly)-equilateral triangle. Draw it out in the 2D case and you will see that all 3 possible spheres you create with only 2 of the points will always exclude the 3rd one. The way I worked around this is to remove the point with smallest sum of distances to its neighbours and compute the n-1 sphere from the remaining ones, then let the final fix-up with the call to computeSphereRadius() to take care of any points remaining, which works well in this case since you need to do that fix-up anyways. I also recommend running the second half of Ritter's iteration instead of the current computeSphereRadius() as it will create a smaller increase (it moves both the radius and the center and it's almost as fast).
In general, checking the isZero(denominator) is not sufficient for the 3- or 4-point case. Any situation where you have a nearly-degenerate simplex (needle-like triangle or needle-like/flattened tetrahedron) will behave very poorly numerically and you won't get an optimal sphere. You can have such a case while the denominator is still large simply because the triangle/tet is large. A better bound I found is to run Ritter's fast algorithm first as a prepass on the points, then pass this as an upper bound into recurseMini() which forwards it to the 3- and 4-point cases. Then I check both whether the denominator is too small, and whether the computed radius exceeds the what-should-be-looser radius found by Ritter's.
Finally, in the 3-point case you compute 3 cross products. It's doable with only 2, though, see the accepted answer at https://gamedev.stackexchange.com/questions/162731/welzl-algorithm-to-find-the-smallest-bounding-sphere

@castano
Copy link
Author

castano commented May 17, 2023

line 133 should be else if (s2.radius < s3.radius) {

Good catch!

Looking at it more closely I noticed a few more bugs:

if (d2 > 0) s1.radius = NV_FLOAT_MAX should be if (d2 > 0) s2.radius = NV_FLOAT_MAX
and
if (d3 > 0) s2.radius = NV_FLOAT_MAX should be if (d3 > 0) s3.radius = NV_FLOAT_MAX

bur as you point this is not entirely correct either.

There's a bigger bug though: the current corner case handling (...) can fail

That makes sense, thanks for the clear example.

I also recommend running the second half of Ritter's iteration instead of the current computeSphereRadius()

This sounds like a good idea. If I were to revisit this code I think I would use Ritter's fixup in the EPOS approximations and also to handle the edge cases as you describe.

Finally, in the 3-point case you compute 3 cross products.

Aha. A minor optimization, but yeah, you can reuse the already computed cross product in that case.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment