To create an anchor to a heading in github flavored markdown.
Add - characters between each word in the heading and wrap the value in parens (#some-markdown-heading)
so your link should look like so:
[create an anchor](#anchors-in-markdown)
%Official Matlab version can be found in the PASCAL VOC devkit | |
%http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit | |
% VOCLABELCOLORMAP Creates a label color map such that adjacent indices have different | |
% colors. Useful for reading and writing index images which contain large indices, | |
% by encoding them as RGB images. | |
% | |
% CMAP = VOCLABELCOLORMAP(N) creates a label color map with N entries. | |
function cmap = labelcolormap(N) |
import sys, getopt | |
import tensorflow as tf | |
usage_str = 'python tensorflow_rename_variables.py --checkpoint_dir=path/to/dir/ ' \ | |
'--replace_from=substr --replace_to=substr --add_prefix=abc --dry_run' | |
def rename(checkpoint_dir, replace_from, replace_to, add_prefix, dry_run): | |
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir) |
#!/bin/bash | |
# add the GPG key for the official Docker repository to the system | |
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - | |
# add the Docker repository to APT sources | |
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | |
# update the package database with the Docker packages from the newly added repo | |
sudo apt-get update |
1. Check Python3 root | |
>>> import sys | |
>>> import os | |
>>> sys.executable | |
'/usr/local/bin/python3' | |
OR | |
$ which python3 | |
/usr/local/bin/python3 |
import random | |
from itertools import chain, cycle, islice | |
import torch.utils.data as data | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
import time | |
import torch | |
import numpy as np |
Once in a while, you may need to cleanup resources (containers, volumes, images, networks) ...
// see: https://github.com/chadoe/docker-cleanup-volumes
$ docker volume rm $(docker volume ls -qf dangling=true)
$ docker volume ls -qf dangling=true | xargs -r docker volume rm
#!/bin/bash | |
# | |
# script to extract ImageNet dataset | |
# ILSVRC2012_img_train.tar (about 138 GB) | |
# ILSVRC2012_img_val.tar (about 6.3 GB) | |
# make sure ILSVRC2012_img_train.tar & ILSVRC2012_img_val.tar in your current directory | |
# | |
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md | |
# | |
# train/ |