Created
August 5, 2021 00:36
-
-
Save choyan/d7ddc506742193b0c1856cbab93d223f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import libraries | |
import pandas as pd | |
import seaborn as sns | |
import flair | |
# configure size of heatmap | |
sns.set(rc={'figure.figsize':(35,3)}) | |
# function to visualize | |
def visualise_sentiments(data): | |
sns.heatmap(pd.DataFrame(data).set_index("Sentence").T,center=0, annot=True, cmap = "PiYG") | |
# model | |
flair_sentiment = flair.models.TextClassifier.load('en-sentiment') | |
# text | |
sentence = "To inspire and guide entrepreneurs is where I get my joy of contribution" | |
# sentiment | |
s = flair.data.Sentence(sentence) | |
flair_sentiment.predict(s) | |
total_sentiment = s.labels | |
total_sentiment | |
# tokenize sentiments | |
tokens = [token.text for token in s.tokens] | |
ss = [flair.data.Sentence(s) for s in tokens] | |
[flair_sentiment.predict(s) for s in ss] | |
sentiments = [s.labels[0].score * (-1,1)[str(s.labels[0]).split()[0].startswith("POS")] for s in ss] | |
# heatmap | |
visualise_sentiments({ | |
"Sentence":["SENTENCE"] + tokens, | |
"Sentiment":[total_sentiment[0].score *(-1,1)[str(total_sentiment[0]).split()[0].startswith("POS")]] + sentiments, | |
}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment