Skip to content

Instantly share code, notes, and snippets.

@chpatrick
Created February 11, 2014 14:23
Show Gist options
  • Save chpatrick/8935738 to your computer and use it in GitHub Desktop.
Save chpatrick/8935738 to your computer and use it in GitHub Desktop.
import numpy as np
import re
import sys
'''
Load a PFM file into a Numpy array. Note that it will have
a shape of H x W, not W x H. Returns a tuple containing the
loaded image and the scale factor from the file.
'''
def load_pfm(file):
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
return np.reshape(data, shape), scale
'''
Save a Numpy array to a PFM file.
'''
def save_pfm(file, image, scale = 1):
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n' % scale)
image.tofile(file)
@mtngld
Copy link

mtngld commented Oct 25, 2017

For load_pfm in python3, I had to add decode('utf-8') to each readline:

header = file.readline().rstrip() -> header = file.readline().decode('utf-8').rstrip()

@orangepips
Copy link

I modified final line of load_pfm to return np.flipud(np.reshape(data, shape)), scale

Also I wrote another helper to make it an image using opencv where as-is the files can have inf values, which throw off normalization.

def get_grayscale(filename, max_val_pct=0.1):
    """
    Handle any infinite values, set those equal to largest value + largest value * max_val_pct
    DocTest .pfm from http://vision.middlebury.edu/stereo/data/scenes2014/datasets/Adirondack-perfect/
    :param filename: str
    :param max_val_pct: float
    :return: numpy.array
    >>> grayscale = get_grayscale('images/Adirondack-perfect/disp1.pfm')
    >>> grayscale = cv2.resize(grayscale, dsize=(0, 0), fx=0.2, fy=0.2)
    >>> cv2.imshow('image', cv2.applyColorMap(grayscale, cv2.COLORMAP_JET))
    >>> cv2.waitKey(0)
    """
    data, _ = load_pfm(open(filename, 'rb'))
    data = np.where(data == np.inf, -1, data)
    max_val = np.max(data)
    max_val += max_val * max_val_pct
    data = np.where(data == -1, max_val, data)
    return cv2.normalize(data, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)

@kapildevkumara
Copy link

For load_pfm in python3, I had to add decode('utf-8') to each readline:

header = file.readline().rstrip() -> header = file.readline().decode('utf-8').rstrip()

For decode('ascii'), use : .decode('ascii'))

And, Load PFM as,
data, _ = load_pfm(open(image_path, 'rb'))
#data : O/P Numpy Array

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment