Created
February 11, 2014 14:23
-
-
Save chpatrick/8935738 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import re | |
import sys | |
''' | |
Load a PFM file into a Numpy array. Note that it will have | |
a shape of H x W, not W x H. Returns a tuple containing the | |
loaded image and the scale factor from the file. | |
''' | |
def load_pfm(file): | |
color = None | |
width = None | |
height = None | |
scale = None | |
endian = None | |
header = file.readline().rstrip() | |
if header == 'PF': | |
color = True | |
elif header == 'Pf': | |
color = False | |
else: | |
raise Exception('Not a PFM file.') | |
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline()) | |
if dim_match: | |
width, height = map(int, dim_match.groups()) | |
else: | |
raise Exception('Malformed PFM header.') | |
scale = float(file.readline().rstrip()) | |
if scale < 0: # little-endian | |
endian = '<' | |
scale = -scale | |
else: | |
endian = '>' # big-endian | |
data = np.fromfile(file, endian + 'f') | |
shape = (height, width, 3) if color else (height, width) | |
return np.reshape(data, shape), scale | |
''' | |
Save a Numpy array to a PFM file. | |
''' | |
def save_pfm(file, image, scale = 1): | |
color = None | |
if image.dtype.name != 'float32': | |
raise Exception('Image dtype must be float32.') | |
if len(image.shape) == 3 and image.shape[2] == 3: # color image | |
color = True | |
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale | |
color = False | |
else: | |
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') | |
file.write('PF\n' if color else 'Pf\n') | |
file.write('%d %d\n' % (image.shape[1], image.shape[0])) | |
endian = image.dtype.byteorder | |
if endian == '<' or endian == '=' and sys.byteorder == 'little': | |
scale = -scale | |
file.write('%f\n' % scale) | |
image.tofile(file) |
For
load_pfm
in python3, I had to adddecode('utf-8')
to eachreadline
:
header = file.readline().rstrip()
->header = file.readline().decode('utf-8').rstrip()
For decode('ascii'), use : .decode('ascii'))
And, Load PFM as,
data, _ = load_pfm(open(image_path, 'rb'))
#data : O/P Numpy Array
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I modified final line of load_pfm to
return np.flipud(np.reshape(data, shape)), scale
Also I wrote another helper to make it an image using opencv where as-is the files can have
inf
values, which throw off normalization.