graph LR
A[Tensorflow] --implements--> B[Deep neural nets]
A --was developed by --> C[Google]graph LR| digraph PurchaseFlow { | |
| rankdir=TD; | |
| edge [color="#333333", penwidth=1, arrowsize=1.2, arrowhead=onormal, style="dashed"]; | |
| splines=spline; | |
| node [shape=box]; | |
| nodesep=0.8; // Increase horizontal spacing between nodes | |
| ranksep=0.7; | |
| // Node definitions with labels | |
| A [label="available funds"]; | |
| B [label="purchases product"]; |
graph LR
A[Tensorflow] --implements--> B[Deep neural nets]
A --was developed by --> C[Google]graph LRgraph LR
A((Keras 3)) --is a high level API for --> B((Tensorflow))
B --was developed by-->H[Google]
C((Pytorch)) --was developed by-->D[Meta]
A --is a high level API for --> C
A --is a high level API for --> F[JAX]
F --was developed by-->H
A --implements--> G[Deep neural nets]
B --implements--> G| import numpy as np | |
| import scipy.stats as stats | |
| # Number of trials and successes for each group | |
| n_1 = 100 | |
| x_1 = 6 | |
| n_2 = 125 | |
| x_2 = 5 | |
| # Parameters for the prior distributions |
| #Test imports | |
| import urllib2, ssl, json, time, re | |
| from bs4 import BeautifulSoup | |
| from selenium import webdriver | |
| from selenium.webdriver.support.ui import Select | |
| #Test urllib2 | |
| import urllib2 | |
| response = urllib2.urlopen('https://en.wikipedia.org/wiki/Test', context=ssl.SSLContext(ssl.PROTOCOL_TLSv1)) |