graph LR
A((Keras 3)) --is a high level API for --> B((Tensorflow))
B --was developed by-->H[Google]
C((Pytorch)) --was developed by-->D[Meta]
A --is a high level API for --> C
A --is a high level API for --> F[JAX]
F --was developed by-->H
A --implements--> G[Deep neural nets]
B --implements--> G
C --implements--> G
F --implements--> P[Linear algebra]
F --implements--> Q[Gradient based optimisation]
I((Theano)) --implements--> P
J((Scikit-learn)) --implements--> L[Machine learning]
G --are a type of--> L
K[Hugging Face's transformers] --is built on--> C
N((PyMC)) --uses-->O((Pytensor))
O --is a fork of--> I
O --uses-->F
R[Tensorflow probability] --uses--> B
R --implements--> S[Bayesian models]
N --implements--> S
Last active
July 19, 2024 17:37
-
-
Save coppeliaMLA/b44a81986d7e49e3dd3ce764afd9f548 to your computer and use it in GitHub Desktop.
Python deep learning packages - a concept map
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment