Skip to content

Instantly share code, notes, and snippets.

View coreyauger's full-sized avatar
zert

Corey Auger coreyauger

zert
  • Bali
View GitHub Profile

Keybase proof

I hereby claim:

  • I am coreyauger on github.
  • I am coreyauger (https://keybase.io/coreyauger) on keybase.
  • I have a public key ASDY8Z2DcU9q-n5nykzxsJyAq0fQ61GvnnTFvQKF8j7j6wo

To claim this, I am signing this object:

#include <SDL2/SDL.h>
#include <iostream>
using namespace std;
const int SCREEN_WIDTH = 800;
const int SCREEN_HEIGHT = 600;
int main( int argc, char* args[] ){
SDL_Window* window = NULL;
SDL_Surface* screenSurface = NULL;
android {
compileSdkVersion 26
buildToolsVersion "26.0.1"
defaultConfig {
if (buildAsApplication) {
applicationId "io.surfkit.simple"
}
minSdkVersion 24
targetSdkVersion 26
versionCode 1
android {
compileSdkVersion 26
buildToolsVersion "26.0.1"
defaultConfig {
if (buildAsApplication) {
applicationId "io.surfkit"
}
minSdkVersion 24
targetSdkVersion 26
#include <exception>
#include <functional>
#define GL_GLEXT_PROTOTYPES 1
#include <SDL2/SDL.h>
#include <SDL2/SDL_opengles2.h>
// Shader sources
const GLchar* vertexSource =
import numpy as np
import os
import dtdata as dt
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Input
from keras.regularizers import l1
from keras.optimizers import RMSprop, Adam
#################################################################################################
## TRAIN FUTURE ENCODER
#################################################################################################
x_train_future = data[hold_out:,20:2420]
print("training on: " + str(x_train_future.shape))
input_future = Input(shape=(x_train_future.shape[1],))
encoded_future = Dense(encoding_dim, activation='relu')(input_future)
decoded_future = Dense(x_train_future.shape[1], activation='linear')(encoded_future)
autoencoder_future = Model(input_future, decoded_future)
#################################################################################################
## TRAIN PAST ENCODER
#################################################################################################
x_train_past = data[hold_out:,0:2400]
print("training past on: " + str(x_train_past.shape))
input_past = Input(shape=(x_train_past.shape[1],))
encoded_past = Dense(encoding_dim, activation='relu')(input_past)
decoded_past = Dense(x_train_past.shape[1], activation='linear')(encoded_past)
autoencoder_past = Model(input_past, decoded_past)
import numpy as np
import os
import dtdata as dt
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Input
from keras.regularizers import l1
from keras.optimizers import RMSprop, Adam
@coreyauger
coreyauger / lstm_simple.py
Created May 11, 2018 19:24
simple lstm model
import numpy as np
import os
import dtdata as dt
import matplotlib.pyplot as plt
import math
import random
import pprint as pp
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler