Skip to content

Instantly share code, notes, and snippets.

@danstowell
Last active April 19, 2024 09:41
Show Gist options
  • Save danstowell/f2d81a897df9e23cc1da to your computer and use it in GitHub Desktop.
Save danstowell/f2d81a897df9e23cc1da to your computer and use it in GitHub Desktop.
Simple example of Wiener deconvolution in Python
#!/usr/bin/env python
# Simple example of Wiener deconvolution in Python.
# We use a fixed SNR across all frequencies in this example.
#
# Written 2015 by Dan Stowell. Public domain.
import numpy as np
from numpy.fft import fft, ifft, ifftshift
import matplotlib
#matplotlib.use('PDF') # http://www.astrobetter.com/plotting-to-a-file-in-python/
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.backends.backend_pdf import PdfPages
plt.rcParams.update({'font.size': 6})
##########################
# user config
sonlen = 128
irlen = 64
lambd_est = 1e-3 # estimated noise lev
##########################
def gen_son(length):
"Generate a synthetic un-reverberated 'sound event' template"
# (whitenoise -> integrate -> envelope -> normalise)
son = np.cumsum(np.random.randn(length))
# apply envelope
attacklen = length / 8
env = np.hstack((np.linspace(0.1, 1, attacklen), np.linspace(1, 0.1, length - attacklen)))
son *= env
son /= np.sqrt(np.sum(son * son))
return son
def gen_ir(length):
"Generate a synthetic impulse response"
# First we generate a quietish tail
son = np.random.randn(length)
attacklen = length / 2
env = np.hstack((np.linspace(0.1, 1, attacklen), np.linspace(1, 0.1, length - attacklen)))
son *= env
son *= 0.05
# Here we add the "direct" signal
son[0] = 1
# Now some early reflection spikes
for _ in range(10):
son[ int(length * (np.random.rand()**2)) ] += np.random.randn() * 0.5
# Normalise and return
son /= np.sqrt(np.sum(son * son))
return son
def wiener_deconvolution(signal, kernel, lambd):
"lambd is the SNR"
kernel = np.hstack((kernel, np.zeros(len(signal) - len(kernel)))) # zero pad the kernel to same length
H = fft(kernel)
deconvolved = np.real(ifft(fft(signal)*np.conj(H)/(H*np.conj(H) + lambd**2)))
return deconvolved
if __name__ == '__main__':
"simple test: get one soundtype and one impulse response, convolve them, deconvolve them, and check the result (plot it!)"
son = gen_son(sonlen)
ir = gen_ir(irlen)
obs = np.convolve(son, ir, mode='full')
# let's add some noise to the obs
obs += np.random.randn(*obs.shape) * lambd_est
son_est = wiener_deconvolution(obs, ir, lambd=lambd_est)[:sonlen]
ir_est = wiener_deconvolution(obs, son, lambd=lambd_est)[:irlen]
# calc error
son_err = np.sqrt(np.mean((son - son_est) ** 2))
ir_err = np.sqrt(np.mean((ir - ir_est) ** 2))
print("single_example_test(): RMS errors son %g, IR %g" % (son_err, ir_err))
# plot
pdf = PdfPages('wiener_deconvolution_example.pdf')
plt.figure(frameon=False)
#
plt.subplot(3,2,1)
plt.plot(son)
plt.title("son")
plt.subplot(3,2,3)
plt.plot(son_est)
plt.title("son_est")
plt.subplot(3,2,2)
plt.plot(ir)
plt.title("ir")
plt.subplot(3,2,4)
plt.plot(ir_est)
plt.title("ir_est")
plt.subplot(3,1,3)
plt.plot(obs)
plt.title("obs")
#
pdf.savefig()
plt.close()
pdf.close()
@lourawirawan
Copy link

lourawirawan commented Apr 21, 2020 via email

@danstowell
Copy link
Author

This code is merely a simple, minimal example of Wiener filtering. You could certainly use it as a template from which to make other things, but that's not the goal here, and I'm afraid here is not the right place to ask.

@MichaelCretignier
Copy link

MichaelCretignier commented Apr 19, 2024

Hi, I am certainly trying to hijack your code and you use it for a completely different purpose compared to what it was designed initially... but, I would like to perform a wiener deconvolution of a signal made of several Gaussians that are simply convolved with an ellipsoide profile. In this case though, the algorithm seems to completely fail the reconstruction, do you have any idea what could be wrong ? Is there any assumptions behind the shape of the signals (length, positivity,...) ?
Screenshots 2024-04-19 à 10 34 59

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment