This TPU VM cheatsheet uses and was tested with the following library versions:
| Library | Version |
|---|---|
| JAX | 0.3.25 |
| FLAX | 0.6.4 |
| Datasets | 2.10.1 |
| Transformers | 4.27.1 |
This TPU VM cheatsheet uses and was tested with the following library versions:
| Library | Version |
|---|---|
| JAX | 0.3.25 |
| FLAX | 0.6.4 |
| Datasets | 2.10.1 |
| Transformers | 4.27.1 |
Disclaimer: This piece is written anonymously. The names of a few particular companies are mentioned, but as common examples only.
This is a short write-up on things that I wish I'd known and considered before joining a private company (aka startup, aka unicorn in some cases). I'm not trying to make the case that you should never join a private company, but the power imbalance between founder and employee is extreme, and that potential candidates would
| """Short and sweet LSTM implementation in Tensorflow. | |
| Motivation: | |
| When Tensorflow was released, adding RNNs was a bit of a hack - it required | |
| building separate graphs for every number of timesteps and was a bit obscure | |
| to use. Since then TF devs added things like `dynamic_rnn`, `scan` and `map_fn`. | |
| Currently the APIs are decent, but all the tutorials that I am aware of are not | |
| making the best use of the new APIs. | |
| Advantages of this implementation: |
| """ Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
| import numpy as np | |
| import cPickle as pickle | |
| import gym | |
| # hyperparameters | |
| H = 200 # number of hidden layer neurons | |
| batch_size = 10 # every how many episodes to do a param update? | |
| learning_rate = 1e-4 | |
| gamma = 0.99 # discount factor for reward |
by Bjørn Friese
Beautiful is better than ugly. Explicit is better than implicit.
I frequently deal with collections of things in the programs I write. Collections of droids, jedis, planets, lightsabers, starfighters, etc. When programming in Python, these collections of things are usually represented as lists, sets and dictionaries. Oftentimes, what I want to do with collections is to transform them in various ways. Comprehensions is a powerful syntax for doing just that. I use them extensively, and it's one of the things that keep me coming back to Python. Let me show you a few examples of the incredible usefulness of comprehensions.
Code for Keras plays catch blog post
python qlearn.py