I hereby claim:
- I am dfjenkins3 on github.
- I am dfjenkins3 (https://keybase.io/dfjenkins3) on keybase.
- I have a public key whose fingerprint is 596F 88F4 BA92 A8AE BB47 7D84 8916 F2F3 B5CA 1207
To claim this, I am signing this object:
library(singleCellTK) | |
createSCTKE_from_Rsubread_and_multiqc <- function(matdir, r1multi, r2multi){ | |
r1annot <- read.table(r1multi, sep="\t", row.names = 1, header=TRUE) | |
colnames(r1annot) <- paste0(colnames(r1annot), "_R1") | |
rownames(r1annot) <- gsub("_R1$", "", rownames(r1annot)) | |
r2annot <- read.table(r2multi, sep="\t", row.names = 1, header=TRUE) | |
colnames(r2annot) <- paste0(colnames(r2annot), "_R2") | |
rownames(r2annot) <- gsub("_R2$", "", rownames(r2annot)) | |
if(any(rownames(r1annot)!=rownames(r2annot))){ |
#' Convert Cell Ranger outs Directory to a SingleCelltkExperiment | |
#' | |
#' This function creates a SingleCelltkExperiment object from a Cell Ranger | |
#' output directory. The filtered count matrix, pca, tsne, and clustering | |
#' results are stored in the object. This function requires the cellrangerRkit | |
#' package which is not on CRAN or Bioconductor. Install it using the directions | |
#' available here: | |
#' | |
#' https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/rkit | |
#' |
library(limma) | |
library(edgeR) | |
# function to return the toptable from limma | |
# indata: raw count matrix for all kras comparisons | |
# subsetcols: column indices for columns that you want to subset | |
# firstannot: the name of the first annotation | |
# secondannot: the name of the second annotation | |
get_toptable <- function(indata, subsetcols, firstannot, secondannot){ | |
subset_gfp_wt <- indata[,subsetcols] |
#credit to @myajima | |
library(cellrangerRkit) #install using https://s3-us-west-2.amazonaws.com/10x.files/supp/cell-exp/rkit-install-1.1.0.R | |
pipestance_path <-getwd() | |
download_sample(sample_name="pbmc3k", | |
sample_dir=pipestance_path, | |
host="https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/") | |
gbm <- load_cellranger_matrix(pipestance_path) |
create_complexheatmap <- function(indata){ | |
set.seed(123) | |
sample.annotation <- data.frame(SampleType=sample(c("groupA","groupB"), | |
size = ncol(indata), | |
replace = TRUE)) | |
topha <- HeatmapAnnotation(df = sample.annotation, | |
col = list(SampleType = c("groupA" = "coral3", | |
"groupB" = "aquamarine4")), |
library(shiny) | |
hist_widget <- function() { | |
shinyApp( | |
ui = fluidPage( | |
sidebarLayout( | |
sidebarPanel(sliderInput("n", "Bins", 5, 100, 20)), | |
mainPanel(plotOutput("hist")) | |
) | |
), |
I hereby claim:
To claim this, I am signing this object:
#run PCA | |
pca.results <- prcomp(t(expression)) | |
#vector of colors | |
cols <- as.character(indata$Annotation) | |
cols[cols=="K"] <- 'red' | |
cols[cols=="LG"] <- 'lightgreen' | |
cols[cols=="G"] <- 'darkgreen' | |
#plot it |
# Comparing GenTox with Bacterial.Mutagenesis | |
```{r} | |
library(Biobase) | |
setwd(file.path("C:","Users","djenk","OneDrive","grad_school","05-2015_fall", | |
"BS830_microarray","20151218-Final_Project")) | |
#TG-GATEs Data (Discovery Set) | |
load("Rat.Liver.in_vivo.repeat.annotated.RData") |