-
-
Save dipspb/764995abe277d1321bdd7f0c0072a2d2 to your computer and use it in GitHub Desktop.
New stacked RNNs in Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
import numpy as np | |
timesteps = 60 | |
input_dim = 64 | |
samples = 10000 | |
batch_size = 128 | |
output_dim = 64 | |
# Test data. | |
x_np = np.random.random((samples, timesteps, input_dim)) | |
y_np = np.random.random((samples, output_dim)) | |
print('Classic stacked LSTM: 35s/epoch on CPU') | |
inputs = keras.Input((timesteps, input_dim)) | |
x = keras.layers.LSTM(output_dim, return_sequences=True)(inputs) | |
x = keras.layers.LSTM(output_dim, return_sequences=True)(x) | |
x = keras.layers.LSTM(output_dim)(x) | |
classic_model = keras.models.Model(inputs, x) | |
classic_model.compile(optimizer='rmsprop', loss='mse') | |
classic_model.fit(x_np, y_np, batch_size=batch_size, epochs=4) | |
print('New stacked LSTM: 30s/epoch on CPU (15pct faster)') | |
cells = [ | |
keras.layers.LSTMCell(output_dim), | |
keras.layers.LSTMCell(output_dim), | |
keras.layers.LSTMCell(output_dim), | |
] | |
inputs = keras.Input((timesteps, input_dim)) | |
x = keras.layers.RNN(cells)(inputs) | |
new_model = keras.models.Model(inputs, x) | |
new_model.compile(optimizer='rmsprop', loss='mse') | |
new_model.fit(x_np, y_np, batch_size=batch_size, epochs=4) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment