Created
June 4, 2024 12:51
-
-
Save dmd/6052208e4c94d863220ed15f3ee58267 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import matplotlib.pyplot as plt | |
import statsmodels.api as sm | |
# Load the data | |
file_path = 'output.csv' | |
data = pd.read_csv(file_path) | |
# Convert the 'Date' column to datetime format | |
data['Date'] = pd.to_datetime(data['Date']) | |
# Sort the data by datetime | |
data = data.sort_values('Date') | |
# Reset the index and ensure the 'Date' column is properly formatted | |
data.reset_index(inplace=True, drop=True) | |
# Perform LOESS smoothing | |
loess = sm.nonparametric.lowess | |
smoothed_values = loess(data['CPM Values'], data['Date'], frac=0.1) # Adjust frac to control the degree of smoothing | |
# Plot the smoothed data with the specified style | |
plt.figure(figsize=(12, 6)) | |
plt.scatter(data['Date'], data['CPM Values'], label='Original Data', color='lightgray', s=10) | |
plt.plot(data['Date'], smoothed_values[:, 1], label='LOESS Smoothed', color='blue', linewidth=2) | |
plt.title('LOESS Smoothed uSv/h over Time') | |
plt.xlabel('Datetime') | |
plt.ylabel('uSv/h') | |
plt.legend() | |
plt.grid(True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment