Created
December 11, 2017 15:58
-
-
Save dmmiller612/97025b27eeb3250fe190e92f758cdc9a to your computer and use it in GitHub Desktop.
Tensorflow Graph and weights to json and back for training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
from google.protobuf import json_format | |
import json | |
np.random.seed(12345) | |
def tensorflow_get_weights(): | |
""" | |
@author https://github.com/maxim5 with code tweak for complete serialization | |
""" | |
vs = tf.trainable_variables() | |
values = tf.get_default_session().run(vs) | |
return values | |
def tensorflow_set_weights(weights): | |
""" | |
@author https://github.com/maxim5 with code tweak for complete serialization | |
""" | |
assign_ops = [] | |
feed_dict = {} | |
vs = tf.trainable_variables() | |
zipped_values = zip(vs, weights) | |
for var, value in zipped_values: | |
value = np.asarray(value) | |
assign_placeholder = tf.placeholder(var.dtype, shape=value.shape) | |
assign_op = var.assign(assign_placeholder) | |
assign_ops.append(assign_op) | |
feed_dict[assign_placeholder] = value | |
tf.get_default_session().run(assign_ops, feed_dict=feed_dict) | |
def convert_weights_to_json(weights): | |
weights = [w.tolist() for w in weights] | |
weights_list = json.dumps(weights) | |
return weights_list | |
def convert_json_to_weights(json_weights): | |
loaded_weights = json.loads(json_weights) | |
loaded_weights = [np.asarray(x) for x in loaded_weights] | |
return loaded_weights | |
def create_simple_graph(): | |
""" | |
Creates a very simple xor graph | |
""" | |
x = tf.placeholder(tf.float32, shape=[None, 2], name='x') | |
layer1 = tf.layers.dense(x, 12, activation=tf.nn.relu) | |
layer2 = tf.layers.dense(layer1, 7, activation=tf.nn.relu) | |
out = tf.layers.dense(layer2, 1, name='outer', activation=tf.nn.sigmoid) | |
opt = tf.train.AdamOptimizer(learning_rate=.01) | |
y = tf.placeholder(tf.float32, shape=[None, 1], name='y') | |
loss = tf.reduce_mean(tf.square(y - out)) | |
mini = opt.minimize(loss, global_step=tf.train.get_or_create_global_step(), name='mini') | |
return mini | |
def retrieve_xor(): | |
""" | |
Grabs xor data | |
""" | |
xor = [(0.0, np.array([0.0, 0.0])), | |
(0.0, np.array([1.0, 1.0])), | |
(1.0, np.array([1.0, 0.0])), | |
(1.0, np.array([0.0, 1.0]))] | |
a = np.asarray([x for y, x in xor]) | |
b = np.asarray([y for y, _ in xor]).reshape((4, 1)) | |
return a, b | |
def run_initial_with_json_weights(opti, feed_dict): | |
""" | |
returns both serialized json graph and weights | |
""" | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for i in range(0, 100): | |
sess.run(opti, feed_dict=feed_dict) | |
first_weights = tensorflow_get_weights() | |
g = tf.get_default_graph().as_graph_def() | |
json_string = json_format.MessageToJson(g) | |
return json_string, convert_weights_to_json(first_weights) | |
def run_serialized(json_graph, json_weights, feed_dict): | |
""" | |
deserialize graph and run it again | |
""" | |
gd = tf.GraphDef() | |
gd = json_format.Parse(json_graph, gd) | |
weights = convert_json_to_weights(json_weights) | |
with tf.Session() as sess: | |
tf.import_graph_def(gd) | |
sess.run(tf.global_variables_initializer()) | |
nu_out = tf.get_default_graph().get_tensor_by_name('outer/Sigmoid:0') | |
mini = tf.get_default_graph().get_tensor_by_name('mini:0') | |
tensorflow_set_weights(weights) | |
for i in range(0, 200): | |
sess.run(mini, feed_dict=feed_dict) | |
predicted = sess.run(nu_out, feed_dict=feed_dict) | |
return predicted | |
def run_with_serialized_weights(): | |
""" | |
weights ARE turned into json | |
""" | |
initial_graph = create_simple_graph() | |
a,b = retrieve_xor() | |
feed_dict = {'x:0': a, 'y:0': b} | |
json_graph, json_weights = run_initial_with_json_weights(initial_graph, feed_dict) | |
predictions = run_serialized(json_graph, json_weights, feed_dict) | |
return predictions | |
if __name__ == "__main__": | |
print(run_with_serialized_weights()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Why do you use np.random.seed in Line 6?