Skip to content

Instantly share code, notes, and snippets.

@dmmiller612
Created December 11, 2017 15:58
Show Gist options
  • Save dmmiller612/97025b27eeb3250fe190e92f758cdc9a to your computer and use it in GitHub Desktop.
Save dmmiller612/97025b27eeb3250fe190e92f758cdc9a to your computer and use it in GitHub Desktop.
Tensorflow Graph and weights to json and back for training
import tensorflow as tf
import numpy as np
from google.protobuf import json_format
import json
np.random.seed(12345)
def tensorflow_get_weights():
"""
@author https://github.com/maxim5 with code tweak for complete serialization
"""
vs = tf.trainable_variables()
values = tf.get_default_session().run(vs)
return values
def tensorflow_set_weights(weights):
"""
@author https://github.com/maxim5 with code tweak for complete serialization
"""
assign_ops = []
feed_dict = {}
vs = tf.trainable_variables()
zipped_values = zip(vs, weights)
for var, value in zipped_values:
value = np.asarray(value)
assign_placeholder = tf.placeholder(var.dtype, shape=value.shape)
assign_op = var.assign(assign_placeholder)
assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
tf.get_default_session().run(assign_ops, feed_dict=feed_dict)
def convert_weights_to_json(weights):
weights = [w.tolist() for w in weights]
weights_list = json.dumps(weights)
return weights_list
def convert_json_to_weights(json_weights):
loaded_weights = json.loads(json_weights)
loaded_weights = [np.asarray(x) for x in loaded_weights]
return loaded_weights
def create_simple_graph():
"""
Creates a very simple xor graph
"""
x = tf.placeholder(tf.float32, shape=[None, 2], name='x')
layer1 = tf.layers.dense(x, 12, activation=tf.nn.relu)
layer2 = tf.layers.dense(layer1, 7, activation=tf.nn.relu)
out = tf.layers.dense(layer2, 1, name='outer', activation=tf.nn.sigmoid)
opt = tf.train.AdamOptimizer(learning_rate=.01)
y = tf.placeholder(tf.float32, shape=[None, 1], name='y')
loss = tf.reduce_mean(tf.square(y - out))
mini = opt.minimize(loss, global_step=tf.train.get_or_create_global_step(), name='mini')
return mini
def retrieve_xor():
"""
Grabs xor data
"""
xor = [(0.0, np.array([0.0, 0.0])),
(0.0, np.array([1.0, 1.0])),
(1.0, np.array([1.0, 0.0])),
(1.0, np.array([0.0, 1.0]))]
a = np.asarray([x for y, x in xor])
b = np.asarray([y for y, _ in xor]).reshape((4, 1))
return a, b
def run_initial_with_json_weights(opti, feed_dict):
"""
returns both serialized json graph and weights
"""
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(0, 100):
sess.run(opti, feed_dict=feed_dict)
first_weights = tensorflow_get_weights()
g = tf.get_default_graph().as_graph_def()
json_string = json_format.MessageToJson(g)
return json_string, convert_weights_to_json(first_weights)
def run_serialized(json_graph, json_weights, feed_dict):
"""
deserialize graph and run it again
"""
gd = tf.GraphDef()
gd = json_format.Parse(json_graph, gd)
weights = convert_json_to_weights(json_weights)
with tf.Session() as sess:
tf.import_graph_def(gd)
sess.run(tf.global_variables_initializer())
nu_out = tf.get_default_graph().get_tensor_by_name('outer/Sigmoid:0')
mini = tf.get_default_graph().get_tensor_by_name('mini:0')
tensorflow_set_weights(weights)
for i in range(0, 200):
sess.run(mini, feed_dict=feed_dict)
predicted = sess.run(nu_out, feed_dict=feed_dict)
return predicted
def run_with_serialized_weights():
"""
weights ARE turned into json
"""
initial_graph = create_simple_graph()
a,b = retrieve_xor()
feed_dict = {'x:0': a, 'y:0': b}
json_graph, json_weights = run_initial_with_json_weights(initial_graph, feed_dict)
predictions = run_serialized(json_graph, json_weights, feed_dict)
return predictions
if __name__ == "__main__":
print(run_with_serialized_weights())
Copy link

ghost commented Jun 3, 2019

Why do you use np.random.seed in Line 6?

@dmmiller612
Copy link
Author

No real reason.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment