Created
February 18, 2017 02:49
-
-
Save dustinvtran/d8cc112636b219776621444324919928 to your computer and use it in GitHub Desktop.
In-progress of truncated DP mixture model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import edward as ed | |
import matplotlib.cm as cm | |
import numpy as np | |
import seaborn as sns | |
import tensorflow as tf | |
from edward.models import \ | |
Normal, MultivariateNormalDiag, Mixture, Categorical, Beta | |
from matplotlib import pyplot as plt | |
def build_toy_dataset(N): | |
pi = np.array([0.4, 0.6]) | |
mus = [[1, 1], [-1, -1]] | |
stds = [[0.1, 0.1], [0.1, 0.1]] | |
x = np.zeros((N, 2), dtype=np.float32) | |
for n in range(N): | |
k = np.argmax(np.random.multinomial(1, pi)) | |
x[n, :] = np.random.multivariate_normal(mus[k], np.diag(stds[k])) | |
return x | |
def stick_breaking(v): | |
remaining_pieces = tf.concat([tf.ones(1), tf.cumprod(1.0 - v)[:-1]], 0) | |
return v * remaining_pieces | |
ed.set_seed(42) | |
N = 500 | |
D = 2 | |
T = K = 5 # truncation level in DP | |
alpha = 0.5 | |
# DATA | |
x_train = build_toy_dataset(N) | |
# plt.scatter(x_train[:, 0], x_train[:, 1]) | |
# plt.axis([-3, 3, -3, 3]) | |
# plt.title("Data") | |
# plt.show() | |
# MODEL | |
beta = Beta(a=tf.ones(T), b=tf.ones(T) * alpha) | |
pi = stick_breaking(beta) | |
cat = Categorical(p=ed.tile(pi, [N, 1])) | |
mu = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D])) | |
components = [ | |
MultivariateNormalDiag(mu=tf.ones([N, 1]) * tf.gather(mu, k), | |
diag_stdev=tf.ones([N, D]) * 0.1) | |
for k in range(K)] | |
x = Mixture(cat=cat, components=components) | |
# INFERENCE | |
qmu = Normal(mu=tf.Variable(tf.random_normal([K, D])), | |
sigma=tf.nn.softplus(tf.Variable(tf.random_normal([K, D]))) + 1e-5) | |
qbeta = Beta(a=tf.nn.softplus(tf.Variable(tf.random_normal([T]))) + 1e-5, | |
b=tf.nn.softplus(tf.Variable(tf.random_normal([T]))) + 1e-5) | |
inference = ed.KLqp({beta: qbeta, mu: qmu}, data={x: x_train}) | |
inference.initialize(n_samples=5, n_iter=500, n_print=25) | |
sess = ed.get_session() | |
init = tf.global_variables_initializer() | |
init.run() | |
for _ in range(inference.n_iter): | |
info_dict = inference.update() | |
inference.print_progress(info_dict) | |
t = info_dict['t'] | |
if t % inference.n_print == 0: | |
print("Inferred cluster means:") | |
print(sess.run(qmu.mean())) | |
print(sess.run(qmu.sigma)) | |
print(sess.run(qbeta.a)) | |
print(sess.run(qbeta.b)) | |
# CRITICISM | |
# Calculate likelihood for each data point and cluster assignment, | |
# averaged over many posterior samples. ``x_post`` has shape (N, 100, K, D). | |
mu_sample = qmu.sample(100) | |
x_post = Normal(mu=tf.ones([N, 1, 1, 1]) * mu_sample, | |
sigma=tf.ones([N, 1, 1, 1]) * 0.1) | |
x_broadcasted = tf.tile(tf.reshape(x_train, [N, 1, 1, D]), [1, 100, K, 1]) | |
# Sum over latent dimension, then average over posterior samples. | |
# ``log_liks`` ends up with shape (N, K). | |
log_liks = x_post.log_prob(x_broadcasted) | |
log_liks = tf.reduce_sum(log_liks, 3) | |
log_liks = tf.reduce_mean(log_liks, 1) | |
# Choose the cluster with the highest likelihood for each data point. | |
clusters = tf.argmax(log_liks, 1).eval() | |
plt.scatter(x_train[:, 0], x_train[:, 1], c=clusters, cmap=cm.bwr) | |
plt.axis([-3, 3, -3, 3]) | |
plt.title("Predicted cluster assignments") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment