Created
July 28, 2018 01:24
-
-
Save el3ment/a00d7ca33248721bb31d616757052982 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
t = model.swizzle(model.swizzle(y)).clone() | |
t[0, :, 0, 0] = torch.arange(0, 16) | |
def even_odd(x, dim=1): | |
evens, odds = x.view(x.size()), x.view(x.size()) | |
odd_offset = np.asscalar(np.prod(x.size()[dim + 1:])) | |
shape, stride = list(x.size()), list(x.stride()) | |
shape[dim] = shape[dim] // 2 | |
stride[dim] *= 2 | |
evens.set_(x.storage(), x.storage_offset(), shape, stride) | |
odds.set_(x.storage(), x.storage_offset() + odd_offset, shape, stride) | |
return evens, odds | |
t = torch.randn([128, 64, 64, 64]) | |
evens, odds = even_odd(t) | |
evens[0, :, 0, 0], odds[0, :, 0, 0] | |
with torch.autograd.profiler.profile(use_cuda=True) as prof: | |
for i in range(10): | |
evens, odds = even_odd(t) | |
print(prof.key_averages().table('cpu_time_total')) | |
with torch.autograd.profiler.profile(use_cuda=True) as prof: | |
for i in range(10): | |
tevens = t[:,0::2,:,:] | |
todds = t[:,1::2,:,:] | |
print(prof.key_averages().table('cpu_time_total')) | |
print('even error', torch.abs(tevens - evens).sum()) | |
print('odd error', torch.abs(todds - odds).sum()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment