Weight-for-age charts, Birth to 24 Months, LMS parameters and selected smoothed weight percentiles in kilograms, by age
I've been using a GPU workstation with an RTX 4090 for almost a year now, and it's been one of the best decisions I've made. With a personal GPU server, you no longer need to rely on cloud-based GPU instances from services like RunPod
or Vast.ai
every time you want to run a job or try new models. The best part? No stress about recurring GPU instance costs! :-)
However, I rarely work directly on my workstation. Instead, I prefer the flexibility of accessing the GPU remotely using my MacBook, whether I'm working from different locations within my home, from a co-working space, or a cozy cafe in another part of town.
In this blog, I will walk you through the steps to configure a personal GPU Ubuntu server.
For this guide, I assume you already have a workstation running Ubuntu with a GPU and it is connected to your local network
date | avg_sunspot_area | |
---|---|---|
1875-01-01 | 213.133333333333 | |
1876-01-01 | 109.283333333333 | |
1877-01-01 | 92.8583333333333 | |
1878-01-01 | 22.2166666666667 | |
1879-01-01 | 36.3333333333333 | |
1880-01-01 | 446.75 | |
1881-01-01 | 679.491666666667 | |
1882-01-01 | 968.025 | |
1883-01-01 | 1148.90833333333 |
<!-- Cal inline embed code begins --> | |
<div style="width:100%;height:100%;overflow:scroll" id="my-cal-inline"></div> | |
<script type="text/javascript"> | |
(function (C, A, L) { let p = function (a, ar) { a.q.push(ar); }; let d = C.document; C.Cal = C.Cal || function () { let cal = C.Cal; let ar = arguments; if (!cal.loaded) { cal.ns = {}; cal.q = cal.q || []; d.head.appendChild(d.createElement("script")).src = A; cal.loaded = true; } if (ar[0] === L) { const api = function () { p(api, arguments); }; const namespace = ar[1]; api.q = api.q || []; typeof namespace === "string" ? (cal.ns[namespace] = api) && p(api, ar) : p(cal, ar); return; } p(cal, ar); }; })(window, "https://app.cal.com/embed/embed.js", "init"); | |
Cal("init", "just-chat", {origin:"https://cal.com"}); | |
Cal.ns["just-chat"]("inline", { | |
elementOrSelector:"#my-cal-inline", | |
calLink: "leima/just-chat", | |
layout: "month_view" |
import numpy as np | |
import plotly.offline as pyo | |
import plotly.graph_objs as go | |
# Generate a random signal | |
np.random.seed(42) | |
random_signal = np.random.normal(size=100) | |
# Offset the line length by the marker size to avoid overlapping | |
marker_offset = 0.04 |
import torch | |
from torch.utils.data import Dataset | |
class FakeTimeSeriesDataset(Dataset): | |
def __init__(self, sequence_length, input_length, prediction_length, nodes) -> None: | |
super().__init__() | |
self.sequence_length = sequence_length | |
self.prediction_length = prediction_length |
name: Docs | |
on: | |
push: | |
branches: [ master ] | |
pull_request: | |
branches: [ master ] | |
jobs: | |
build: | |
name: Build docs |
import json | |
import os | |
import random | |
import requests | |
from loguru import logger | |
from requests.adapters import HTTPAdapter | |
from requests.packages.urllib3.util.retry import Retry | |