Created
January 16, 2022 08:48
-
-
Save emptymalei/0269c60796262172256ce588c93734c0 to your computer and use it in GitHub Desktop.
stemgnn_experiment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import Dataset | |
class FakeTimeSeriesDataset(Dataset): | |
def __init__(self, sequence_length, input_length, prediction_length, nodes) -> None: | |
super().__init__() | |
self.sequence_length = sequence_length | |
self.prediction_length = prediction_length | |
self.input_length = input_length | |
assert self.sequence_length > self.prediction_length | |
self.nodes = nodes | |
self._gen_data() | |
def _gen_data(self): | |
series = [] | |
for i in range(self.nodes): | |
series.append( | |
torch.sin( | |
torch.linspace( | |
i, self.sequence_length + i, self.sequence_length + 1 | |
) | |
) | |
) | |
self.data = torch.stack(series) | |
def _slice(self, index): | |
return ( | |
self.data[:, index : index + self.input_length], | |
self.data[ | |
:, | |
index | |
+ self.input_length : index | |
+ self.input_length | |
+ self.prediction_length, | |
], | |
) | |
def __len__(self): | |
return self.sequence_length - self.input_length | |
def __getitem__(self, index): | |
return self._slice(index) | |
if __name__ == "__main__": | |
d = FakeTimeSeriesDataset(100, 5, 1, 3) | |
print(d.data.shape) | |
print(d[0][0].shape, d[0][1].shape) | |
print(d[0]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from stemgnn import Model | |
from data import FakeTimeSeriesDataset | |
import pytorch_lightning as pl | |
from torch import nn | |
import torch | |
from loguru import logger | |
from pytorch_lightning.loggers import TensorBoardLogger | |
class SGNN(pl.LightningModule): | |
def __init__( | |
self, nodes, stemgnn_stacks=2, window_size=12, multi_layer=5, horizon=3 | |
): | |
super().__init__() | |
self.nodes = nodes | |
self.stemgnn_stacks = stemgnn_stacks | |
self.window_size = window_size | |
self.multi_layer = multi_layer | |
self.horizon = horizon | |
self.model = Model( | |
self.nodes, | |
self.stemgnn_stacks, | |
self.window_size, | |
self.multi_layer, | |
self.horizon, | |
) | |
self.loss_function = nn.MSELoss(reduction="mean") | |
self.example_input_array = torch.rand((2, self.nodes, self.window_size)) | |
def forward(self, x): | |
forecast, _ = self.model(x) | |
return forecast | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
forecast, _ = self.model(x) | |
loss = self.loss_function(forecast, y) | |
self.log("train_loss", loss) | |
return loss | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam( | |
params=self.parameters(), lr=1e-3, betas=(0.9, 0.999) | |
) | |
return optimizer | |
if __name__ == "__main__": | |
dataset = FakeTimeSeriesDataset( | |
sequence_length=100, input_length=5, prediction_length=1, nodes=3 | |
) | |
logger.debug(f"Loaded dataset: {dataset[0]}") | |
dl = torch.utils.data.DataLoader(dataset, batch_size=2) | |
m = SGNN( | |
nodes=dataset.nodes, | |
window_size=dataset.input_length, | |
horizon=dataset.prediction_length, | |
) | |
logger = TensorBoardLogger("tb_logs", name="StemGNN", log_graph=True) | |
trainer = pl.Trainer() | |
trainer.fit(m, dl) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment