Created
June 12, 2020 05:33
-
-
Save enochkan/365f48d2d55df969f9232bdad5c04e9c to your computer and use it in GitHub Desktop.
vox2vox model losses
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# --------------------- | |
# Train Discriminator, only update every disc_update batches | |
# --------------------- | |
# Real loss | |
fake_B = generator(real_A) | |
pred_real = discriminator(real_B, real_A) | |
loss_real = criterion_GAN(pred_real, valid) | |
# Fake loss | |
pred_fake = discriminator(fake_B.detach(), real_A) | |
loss_fake = criterion_GAN(pred_fake, fake) | |
# Total loss | |
loss_D = 0.5 * (loss_real + loss_fake) | |
d_real_acu = torch.ge(pred_real.squeeze(), 0.5).float() | |
d_fake_acu = torch.le(pred_fake.squeeze(), 0.5).float() | |
d_total_acu = torch.mean(torch.cat((d_real_acu, d_fake_acu), 0)) | |
if d_total_acu <= opt.d_threshold: | |
optimizer_D.zero_grad() | |
loss_D.backward() | |
optimizer_D.step() | |
discriminator_update = 'True' | |
# ------------------ | |
# Train Generators | |
# ------------------ | |
optimizer_D.zero_grad() | |
optimizer_G.zero_grad() | |
# GAN loss | |
fake_B = generator(real_A) | |
pred_fake = discriminator(fake_B, real_A) | |
loss_GAN = criterion_GAN(pred_fake, valid) | |
# Voxel-wise loss | |
loss_voxel = criterion_voxelwise(fake_B, real_B) | |
# Total loss | |
loss_G = loss_GAN + lambda_voxel * loss_voxel | |
loss_G.backward() | |
optimizer_G.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment