Last active
December 31, 2022 16:16
-
-
Save enochkan/56af870bd19884f189639a0cb3381ff4 to your computer and use it in GitHub Desktop.
class definition of adam optimizer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class AdamOptim(): | |
def __init__(self, eta=0.01, beta1=0.9, beta2=0.999, epsilon=1e-8): | |
self.m_dw, self.v_dw = 0, 0 | |
self.m_db, self.v_db = 0, 0 | |
self.beta1 = beta1 | |
self.beta2 = beta2 | |
self.epsilon = epsilon | |
self.eta = eta | |
def update(self, t, w, b, dw, db): | |
## dw, db are from current minibatch | |
## momentum beta 1 | |
# *** weights *** # | |
self.m_dw = self.beta1*self.m_dw + (1-self.beta1)*dw | |
# *** biases *** # | |
self.m_db = self.beta1*self.m_db + (1-self.beta1)*db | |
## rms beta 2 | |
# *** weights *** # | |
self.v_dw = self.beta2*self.v_dw + (1-self.beta2)*(dw**2) | |
# *** biases *** # | |
self.v_db = self.beta2*self.v_db + (1-self.beta2)*(db) | |
## bias correction | |
m_dw_corr = self.m_dw/(1-self.beta1**t) | |
m_db_corr = self.m_db/(1-self.beta1**t) | |
v_dw_corr = self.v_dw/(1-self.beta2**t) | |
v_db_corr = self.v_db/(1-self.beta2**t) | |
## update weights and biases | |
w = w - self.eta*(m_dw_corr/(np.sqrt(v_dw_corr)+self.epsilon)) | |
b = b - self.eta*(m_db_corr/(np.sqrt(v_db_corr)+self.epsilon)) | |
return w, b |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, what is "t" parameter in update function?