Created
September 25, 2020 16:21
-
-
Save eric-pedersen/69181a972de93db3657489c9d356f01f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mgcv) | |
set.seed(3);n <- 400 | |
############################################ | |
## First example: simulated Tweedie model... | |
############################################ | |
dat <- gamSim(1,n=n,dist="poisson",scale=.2) | |
dat$y <- rTweedie(exp(dat$f),p=1.3,phi=.5) ## Tweedie response | |
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=tw(), | |
data=dat,method="REML") | |
## simulate directly from Gaussian approximate posterior... | |
br <- rmvn(1000,coef(b),vcov(b)) | |
## Alternatively use MH sampling... | |
br <- gam.mh(b,thin=2,ns=2000,rw.scale=.15)$bs | |
## If 'coda' installed, can check effective sample size | |
## require(coda);effectiveSize(as.mcmc(br)) | |
## Now compare simulation results and Gaussian approximation for | |
## smooth term confidence intervals... | |
x <- seq(0,1,length=100) | |
pd <- data.frame(x0=x,x1=x,x2=x,x3=x) | |
X <- predict(b,newdata=pd,type="lpmatrix") | |
par(mfrow=c(2,2)) | |
for(i in 1:4) { | |
plot(b,select=i,scale=0,scheme=1) | |
ii <- b$smooth[[i]]$first.para:b$smooth[[i]]$last.para | |
ff <- X[,ii]%*%t(br[,ii]) #not multipled by br here previously | |
fq <- apply(ff,1,quantile,probs=c(.025,.16,.84,.975)) | |
lines(x,fq[1,],col=2,lty=2);lines(x,fq[4,],col=2,lty=2) | |
lines(x,fq[2,],col=2);lines(x,fq[3,],col=2) | |
} | |
############################################################### | |
## Second example, where Gaussian approximation is a failure... | |
############################################################### | |
y <- c(rep(0, 89), 1, 0, 1, 0, 0, 1, rep(0, 13), 1, 0, 0, 1, | |
rep(0, 10), 1, 0, 0, 1, 1, 0, 1, rep(0,4), 1, rep(0,3), | |
1, rep(0, 3), 1, rep(0, 10), 1, rep(0, 4), 1, 0, 1, 0, 0, | |
rep(1, 4), 0, rep(1, 5), rep(0, 4), 1, 1, rep(0, 46)) | |
set.seed(3);x <- sort(c(0:10*5,rnorm(length(y)-11)*20+100)) | |
b <- gam(y ~ s(x, k = 15),method = 'REML', family = binomial) | |
br <- gam.mh(b,thin=2,ns=2000,rw.scale=.4)$bs | |
X <- model.matrix(b) | |
par(mfrow=c(1,1)) | |
plot(x, y, col = rgb(0,0,0,0.25), ylim = c(0,1)) | |
ff <- X%*%t(br) #not multipled by br here previously | |
linv <- b$family$linkinv | |
## Get intervals for the curve on the response scale... | |
fq <- linv(apply(ff,1,quantile,probs=c(.025,.16,.5,.84,.975))) | |
lines(x,fq[1,],col=2,lty=2);lines(x,fq[5,],col=2,lty=2) | |
lines(x,fq[2,],col=2);lines(x,fq[4,],col=2) | |
lines(x,fq[3,],col=4) | |
## Compare to the Gaussian posterior approximation | |
fv <- predict(b,se=TRUE) | |
lines(x,linv(fv$fit)) | |
lines(x,linv(fv$fit-2*fv$se.fit),lty=3) | |
lines(x,linv(fv$fit+2*fv$se.fit),lty=3) | |
## ... Notice the useless 95% CI (black dotted) based on the | |
## Gaussian approximation! |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Only just realised looking through this that in the first example the comparison is not between MVN draws and M-H, but rather between the Nychka-type intervals and M-H (at 2 different levels), so line 14 is redundant?