Created
June 6, 2016 23:56
-
-
Save erutuf/2fed1032f476844a3fcde52fd5585274 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(* sample code of automatic differentiation in Coq *) | |
Require Import QArith. | |
Open Scope Q_scope. | |
Definition QFunc := Q -> Q. | |
Parameter der_rel : QFunc -> QFunc -> Prop. | |
Axiom add_der : forall f g f' g', der_rel f f' -> der_rel g g' -> | |
der_rel (fun x => f x + g x) (fun x => f' x + g' x). | |
Axiom scalar_der : forall c f f', der_rel f f' -> der_rel (fun x => c * f x) (fun x => c * f' x). | |
Axiom leibnitz_der : forall f g f' g', der_rel f f' -> der_rel g g' -> | |
der_rel (fun x => f x * g x) (fun x => f' x * g x + f x * g' x). | |
Axiom comp_der : forall f g f' g', der_rel f f' -> der_rel g g' -> | |
der_rel (fun x => f (g x)) (fun x => f' (g x) * g' x). | |
Axiom const_der : forall (c : Q), der_rel (fun _ => c) (fun _ => 0). | |
Axiom id_der : der_rel (fun x => x) (fun _ => 1). | |
Parameter exp : Q -> Q. | |
Axiom exp_der : der_rel exp exp. | |
Ltac calc_der := eexists; | |
repeat (apply add_der || apply scalar_der || apply leibnitz_der || apply const_der || apply id_der || apply exp_der || apply comp_der). | |
(* differentiate x^2 *) | |
Example derivative_x_sq : { f | der_rel (fun x => x * x) f }. | |
calc_der. | |
Defined. | |
Eval simpl in proj1_sig derivative_x_sq. | |
(* | |
= fun x : Q => 1 * x + x * 1 | |
: QFunc | |
*) | |
(* differenciate cx + b *) | |
Example derivative_linear (b c : Q) : { f | der_rel (fun x => c * x + b) f }. | |
calc_der. | |
Defined. | |
Eval simpl in proj1_sig (derivative_linear (inject_Z 3) (inject_Z 2)). | |
(* | |
= fun _ : Q => inject_Z 2 * 1 + 0 | |
: QFunc | |
*) | |
Example derivative_hoge : { f | der_rel (fun x => x * exp x + x * x) f }. | |
calc_der. | |
Defined. | |
Eval simpl in proj1_sig derivative_hoge. | |
(* | |
= fun x : Q => 1 * exp x + x * exp x + (1 * x + x * 1) | |
: QFunc | |
*) | |
Example derivative_fuga : { f | der_rel (fun x => exp (x * x + x) + (inject_Z 2)*x) f }. | |
calc_der. | |
Defined. | |
Eval simpl in proj1_sig derivative_fuga. | |
(* | |
= fun x : Q => exp (x * x + x) * (1 * x + x * 1 + 1) + inject_Z 2 * 1 | |
: QFunc | |
*) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment