Skip to content

Instantly share code, notes, and snippets.

@freedomofkeima
Created February 2, 2016 08:00
Show Gist options
  • Save freedomofkeima/3def80449362f062c17e to your computer and use it in GitHub Desktop.
Save freedomofkeima/3def80449362f062c17e to your computer and use it in GitHub Desktop.
TensorFlow Example for Beginners
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
## SECTION FOR INPUT DATA
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
## END OF SECTION
# Download data to MNIST_data/
# There are 55000 records (28 * 28 pixels = 784)
mnist = read_data_sets("MNIST_data/", one_hot=True)
## Creating Model
# Describe interacting operations by manipulating symbolic variables
# x will be calculated by TensorFlow (None = dimension in any length)
x = tf.placeholder(tf.float32, [None, 784])
# Weight (W) & Bias (b)
# Initially, all of them are zeros
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Tensor Flow it!
# We can run it in CPU and GPU (let TensorFlow handle it)
# We flip Wx to (x, W), because we need to deal with x being a
# 2D tensor with multiple inputs
y = tf.nn.softmax(tf.matmul(x, W) + b)
## Training
# Placeholder to input the correct answers
y_ = tf.placeholder(tf.float32, [None, 10])
# Implement cross entropy
# 1e-10 is for smoothing
# See http://stackoverflow.com/a/34364526
cross_entropy = -tf.reduce_sum(y_ * tf.log(y + 1e-10))
# Debug line (print entropy every 100 images)
# cross_entropy = tf.Print(cross_entropy, [cross_entropy], "CrossE")
# Backpropagation algorithm
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# Another alternatives (you could also lower 0.01 to other learning rate)
# train_step = tf.train.AdagradOptimizer(0.01).minimize(cross_entropy)
# train_step = tf.train.AdamOptimizer().minimize(cross_entropy)
# train_step = tf.train.FtrlOptimizer(0.01).minimize(cross_entropy)
# train_step = tf.train.RMSPropOptimizer(0.01, 0.1).minimize(cross_entropy)
# Initialize
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
# Run the training step 1000 times
# Stochastic training (gradient descent in this one)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100) # take 100 images randomly
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
## Evaluation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# Cast to floating point and take the mean
# For example: [True, False, True, True] -> [1, 0, 1 , 1] -> 0.75
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
@freedomofkeima
Copy link
Author

How to install and run (Python with Virtualenv)

Follow the guide at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md#virtualenv-installation.

Example Value in Image

The content of single randomly chosen row:

 [[  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [ 38]
  [254]
  [254]
  [ 77]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]
  [  0]]

Each image has 28 rows. There are 60000 images in train dataset (55000 for training, 5000 for validation).

Run result

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 8
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 8
0.9078

The result 0.9078 is random (because we use sampling in the stochastic training, with 100 random images per batch).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment