Created
February 2, 2016 08:00
-
-
Save freedomofkeima/3def80449362f062c17e to your computer and use it in GitHub Desktop.
TensorFlow Example for Beginners
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import gzip | |
import os | |
import tensorflow.python.platform | |
import numpy | |
from six.moves import urllib | |
from six.moves import xrange # pylint: disable=redefined-builtin | |
import tensorflow as tf | |
## SECTION FOR INPUT DATA | |
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | |
def maybe_download(filename, work_directory): | |
"""Download the data from Yann's website, unless it's already here.""" | |
if not os.path.exists(work_directory): | |
os.mkdir(work_directory) | |
filepath = os.path.join(work_directory, filename) | |
if not os.path.exists(filepath): | |
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) | |
statinfo = os.stat(filepath) | |
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') | |
return filepath | |
def _read32(bytestream): | |
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | |
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] | |
def extract_images(filename): | |
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2051: | |
raise ValueError( | |
'Invalid magic number %d in MNIST image file: %s' % | |
(magic, filename)) | |
num_images = _read32(bytestream) | |
rows = _read32(bytestream) | |
cols = _read32(bytestream) | |
buf = bytestream.read(rows * cols * num_images) | |
data = numpy.frombuffer(buf, dtype=numpy.uint8) | |
data = data.reshape(num_images, rows, cols, 1) | |
return data | |
def dense_to_one_hot(labels_dense, num_classes=10): | |
"""Convert class labels from scalars to one-hot vectors.""" | |
num_labels = labels_dense.shape[0] | |
index_offset = numpy.arange(num_labels) * num_classes | |
labels_one_hot = numpy.zeros((num_labels, num_classes)) | |
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | |
return labels_one_hot | |
def extract_labels(filename, one_hot=False): | |
"""Extract the labels into a 1D uint8 numpy array [index].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2049: | |
raise ValueError( | |
'Invalid magic number %d in MNIST label file: %s' % | |
(magic, filename)) | |
num_items = _read32(bytestream) | |
buf = bytestream.read(num_items) | |
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | |
if one_hot: | |
return dense_to_one_hot(labels) | |
return labels | |
class DataSet(object): | |
def __init__(self, images, labels, fake_data=False, one_hot=False, | |
dtype=tf.float32): | |
"""Construct a DataSet. | |
one_hot arg is used only if fake_data is true. `dtype` can be either | |
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into | |
`[0, 1]`. | |
""" | |
dtype = tf.as_dtype(dtype).base_dtype | |
if dtype not in (tf.uint8, tf.float32): | |
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % | |
dtype) | |
if fake_data: | |
self._num_examples = 10000 | |
self.one_hot = one_hot | |
else: | |
assert images.shape[0] == labels.shape[0], ( | |
'images.shape: %s labels.shape: %s' % (images.shape, | |
labels.shape)) | |
self._num_examples = images.shape[0] | |
# Convert shape from [num examples, rows, columns, depth] | |
# to [num examples, rows*columns] (assuming depth == 1) | |
assert images.shape[3] == 1 | |
images = images.reshape(images.shape[0], | |
images.shape[1] * images.shape[2]) | |
if dtype == tf.float32: | |
# Convert from [0, 255] -> [0.0, 1.0]. | |
images = images.astype(numpy.float32) | |
images = numpy.multiply(images, 1.0 / 255.0) | |
self._images = images | |
self._labels = labels | |
self._epochs_completed = 0 | |
self._index_in_epoch = 0 | |
@property | |
def images(self): | |
return self._images | |
@property | |
def labels(self): | |
return self._labels | |
@property | |
def num_examples(self): | |
return self._num_examples | |
@property | |
def epochs_completed(self): | |
return self._epochs_completed | |
def next_batch(self, batch_size, fake_data=False): | |
"""Return the next `batch_size` examples from this data set.""" | |
if fake_data: | |
fake_image = [1] * 784 | |
if self.one_hot: | |
fake_label = [1] + [0] * 9 | |
else: | |
fake_label = 0 | |
return [fake_image for _ in xrange(batch_size)], [ | |
fake_label for _ in xrange(batch_size)] | |
start = self._index_in_epoch | |
self._index_in_epoch += batch_size | |
if self._index_in_epoch > self._num_examples: | |
# Finished epoch | |
self._epochs_completed += 1 | |
# Shuffle the data | |
perm = numpy.arange(self._num_examples) | |
numpy.random.shuffle(perm) | |
self._images = self._images[perm] | |
self._labels = self._labels[perm] | |
# Start next epoch | |
start = 0 | |
self._index_in_epoch = batch_size | |
assert batch_size <= self._num_examples | |
end = self._index_in_epoch | |
return self._images[start:end], self._labels[start:end] | |
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): | |
class DataSets(object): | |
pass | |
data_sets = DataSets() | |
if fake_data: | |
def fake(): | |
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) | |
data_sets.train = fake() | |
data_sets.validation = fake() | |
data_sets.test = fake() | |
return data_sets | |
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | |
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | |
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | |
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | |
VALIDATION_SIZE = 5000 | |
local_file = maybe_download(TRAIN_IMAGES, train_dir) | |
train_images = extract_images(local_file) | |
local_file = maybe_download(TRAIN_LABELS, train_dir) | |
train_labels = extract_labels(local_file, one_hot=one_hot) | |
local_file = maybe_download(TEST_IMAGES, train_dir) | |
test_images = extract_images(local_file) | |
local_file = maybe_download(TEST_LABELS, train_dir) | |
test_labels = extract_labels(local_file, one_hot=one_hot) | |
validation_images = train_images[:VALIDATION_SIZE] | |
validation_labels = train_labels[:VALIDATION_SIZE] | |
train_images = train_images[VALIDATION_SIZE:] | |
train_labels = train_labels[VALIDATION_SIZE:] | |
data_sets.train = DataSet(train_images, train_labels, dtype=dtype) | |
data_sets.validation = DataSet(validation_images, validation_labels, | |
dtype=dtype) | |
data_sets.test = DataSet(test_images, test_labels, dtype=dtype) | |
return data_sets | |
## END OF SECTION | |
# Download data to MNIST_data/ | |
# There are 55000 records (28 * 28 pixels = 784) | |
mnist = read_data_sets("MNIST_data/", one_hot=True) | |
## Creating Model | |
# Describe interacting operations by manipulating symbolic variables | |
# x will be calculated by TensorFlow (None = dimension in any length) | |
x = tf.placeholder(tf.float32, [None, 784]) | |
# Weight (W) & Bias (b) | |
# Initially, all of them are zeros | |
W = tf.Variable(tf.zeros([784, 10])) | |
b = tf.Variable(tf.zeros([10])) | |
# Tensor Flow it! | |
# We can run it in CPU and GPU (let TensorFlow handle it) | |
# We flip Wx to (x, W), because we need to deal with x being a | |
# 2D tensor with multiple inputs | |
y = tf.nn.softmax(tf.matmul(x, W) + b) | |
## Training | |
# Placeholder to input the correct answers | |
y_ = tf.placeholder(tf.float32, [None, 10]) | |
# Implement cross entropy | |
# 1e-10 is for smoothing | |
# See http://stackoverflow.com/a/34364526 | |
cross_entropy = -tf.reduce_sum(y_ * tf.log(y + 1e-10)) | |
# Debug line (print entropy every 100 images) | |
# cross_entropy = tf.Print(cross_entropy, [cross_entropy], "CrossE") | |
# Backpropagation algorithm | |
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) | |
# Another alternatives (you could also lower 0.01 to other learning rate) | |
# train_step = tf.train.AdagradOptimizer(0.01).minimize(cross_entropy) | |
# train_step = tf.train.AdamOptimizer().minimize(cross_entropy) | |
# train_step = tf.train.FtrlOptimizer(0.01).minimize(cross_entropy) | |
# train_step = tf.train.RMSPropOptimizer(0.01, 0.1).minimize(cross_entropy) | |
# Initialize | |
init = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init) | |
# Run the training step 1000 times | |
# Stochastic training (gradient descent in this one) | |
for i in range(1000): | |
batch_xs, batch_ys = mnist.train.next_batch(100) # take 100 images randomly | |
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) | |
## Evaluation | |
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
# Cast to floating point and take the mean | |
# For example: [True, False, True, True] -> [1, 0, 1 , 1] -> 0.75 | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How to install and run (Python with Virtualenv)
Follow the guide at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md#virtualenv-installation.
Example Value in Image
The content of single randomly chosen row:
Each image has 28 rows. There are 60000 images in train dataset (55000 for training, 5000 for validation).
Run result
The result 0.9078 is random (because we use sampling in the stochastic training, with 100 random images per batch).