Created
February 2, 2016 09:18
-
-
Save freedomofkeima/f41bb8dff547d18088b3 to your computer and use it in GitHub Desktop.
TensorFlow Example for Experts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import gzip | |
import os | |
import tensorflow.python.platform | |
import numpy | |
from six.moves import urllib | |
from six.moves import xrange # pylint: disable=redefined-builtin | |
import tensorflow as tf | |
## SECTION FOR INPUT DATA | |
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | |
def maybe_download(filename, work_directory): | |
"""Download the data from Yann's website, unless it's already here.""" | |
if not os.path.exists(work_directory): | |
os.mkdir(work_directory) | |
filepath = os.path.join(work_directory, filename) | |
if not os.path.exists(filepath): | |
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) | |
statinfo = os.stat(filepath) | |
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') | |
return filepath | |
def _read32(bytestream): | |
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | |
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] | |
def extract_images(filename): | |
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2051: | |
raise ValueError( | |
'Invalid magic number %d in MNIST image file: %s' % | |
(magic, filename)) | |
num_images = _read32(bytestream) | |
rows = _read32(bytestream) | |
cols = _read32(bytestream) | |
buf = bytestream.read(rows * cols * num_images) | |
data = numpy.frombuffer(buf, dtype=numpy.uint8) | |
data = data.reshape(num_images, rows, cols, 1) | |
return data | |
def dense_to_one_hot(labels_dense, num_classes=10): | |
"""Convert class labels from scalars to one-hot vectors.""" | |
num_labels = labels_dense.shape[0] | |
index_offset = numpy.arange(num_labels) * num_classes | |
labels_one_hot = numpy.zeros((num_labels, num_classes)) | |
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | |
return labels_one_hot | |
def extract_labels(filename, one_hot=False): | |
"""Extract the labels into a 1D uint8 numpy array [index].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2049: | |
raise ValueError( | |
'Invalid magic number %d in MNIST label file: %s' % | |
(magic, filename)) | |
num_items = _read32(bytestream) | |
buf = bytestream.read(num_items) | |
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | |
if one_hot: | |
return dense_to_one_hot(labels) | |
return labels | |
class DataSet(object): | |
def __init__(self, images, labels, fake_data=False, one_hot=False, | |
dtype=tf.float32): | |
"""Construct a DataSet. | |
one_hot arg is used only if fake_data is true. `dtype` can be either | |
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into | |
`[0, 1]`. | |
""" | |
dtype = tf.as_dtype(dtype).base_dtype | |
if dtype not in (tf.uint8, tf.float32): | |
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % | |
dtype) | |
if fake_data: | |
self._num_examples = 10000 | |
self.one_hot = one_hot | |
else: | |
assert images.shape[0] == labels.shape[0], ( | |
'images.shape: %s labels.shape: %s' % (images.shape, | |
labels.shape)) | |
self._num_examples = images.shape[0] | |
# Convert shape from [num examples, rows, columns, depth] | |
# to [num examples, rows*columns] (assuming depth == 1) | |
assert images.shape[3] == 1 | |
images = images.reshape(images.shape[0], | |
images.shape[1] * images.shape[2]) | |
if dtype == tf.float32: | |
# Convert from [0, 255] -> [0.0, 1.0]. | |
images = images.astype(numpy.float32) | |
images = numpy.multiply(images, 1.0 / 255.0) | |
self._images = images | |
self._labels = labels | |
self._epochs_completed = 0 | |
self._index_in_epoch = 0 | |
@property | |
def images(self): | |
return self._images | |
@property | |
def labels(self): | |
return self._labels | |
@property | |
def num_examples(self): | |
return self._num_examples | |
@property | |
def epochs_completed(self): | |
return self._epochs_completed | |
def next_batch(self, batch_size, fake_data=False): | |
"""Return the next `batch_size` examples from this data set.""" | |
if fake_data: | |
fake_image = [1] * 784 | |
if self.one_hot: | |
fake_label = [1] + [0] * 9 | |
else: | |
fake_label = 0 | |
return [fake_image for _ in xrange(batch_size)], [ | |
fake_label for _ in xrange(batch_size)] | |
start = self._index_in_epoch | |
self._index_in_epoch += batch_size | |
if self._index_in_epoch > self._num_examples: | |
# Finished epoch | |
self._epochs_completed += 1 | |
# Shuffle the data | |
perm = numpy.arange(self._num_examples) | |
numpy.random.shuffle(perm) | |
self._images = self._images[perm] | |
self._labels = self._labels[perm] | |
# Start next epoch | |
start = 0 | |
self._index_in_epoch = batch_size | |
assert batch_size <= self._num_examples | |
end = self._index_in_epoch | |
return self._images[start:end], self._labels[start:end] | |
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): | |
class DataSets(object): | |
pass | |
data_sets = DataSets() | |
if fake_data: | |
def fake(): | |
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) | |
data_sets.train = fake() | |
data_sets.validation = fake() | |
data_sets.test = fake() | |
return data_sets | |
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | |
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | |
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | |
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | |
VALIDATION_SIZE = 5000 | |
local_file = maybe_download(TRAIN_IMAGES, train_dir) | |
train_images = extract_images(local_file) | |
local_file = maybe_download(TRAIN_LABELS, train_dir) | |
train_labels = extract_labels(local_file, one_hot=one_hot) | |
local_file = maybe_download(TEST_IMAGES, train_dir) | |
test_images = extract_images(local_file) | |
local_file = maybe_download(TEST_LABELS, train_dir) | |
test_labels = extract_labels(local_file, one_hot=one_hot) | |
validation_images = train_images[:VALIDATION_SIZE] | |
validation_labels = train_labels[:VALIDATION_SIZE] | |
train_images = train_images[VALIDATION_SIZE:] | |
train_labels = train_labels[VALIDATION_SIZE:] | |
data_sets.train = DataSet(train_images, train_labels, dtype=dtype) | |
data_sets.validation = DataSet(validation_images, validation_labels, | |
dtype=dtype) | |
data_sets.test = DataSet(test_images, test_labels, dtype=dtype) | |
return data_sets | |
## END OF SECTION | |
# Download data to MNIST_data/ | |
# There are 55000 records (28 * 28 pixels = 784) | |
mnist = read_data_sets("MNIST_data/", one_hot=True) | |
## We will create a Multilayer Convolutional Network here | |
# Placeholder | |
x = tf.placeholder("float", shape=[None, 784]) | |
y_ = tf.placeholder("float", shape=[None, 10]) | |
# Initialize weight with a small amount of noise for symmetry breaking | |
# and to prevent 0 gradients | |
def weight_variable(shape): | |
# Outputs random values from a truncated normal distribution. | |
# See https://www.tensorflow.org/versions/0.6.0/api_docs/python/constant_op.html#truncated_normal | |
initial = tf.truncated_normal(shape, stddev=0.1) | |
return tf.Variable(initial) | |
def bias_variable(shape): | |
initial = tf.constant(0.1, shape=shape) | |
return tf.Variable(initial) | |
# Convolution and Pooling | |
# See https://www.tensorflow.org/versions/0.6.0/api_docs/python/nn.html#conv2d | |
def conv2d(x, W): | |
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') | |
# See https://www.tensorflow.org/versions/0.6.0/api_docs/python/nn.html#max_pool | |
def max_pool_2x2(x): | |
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], | |
strides=[1, 2, 2, 1], padding='SAME') | |
## First Convolutional Layer | |
# 32 Features for each 5x5 patch | |
# [patch_size, patch_size, input_channel, output_channel] | |
W_conv1 = weight_variable([5, 5, 1, 32]) | |
b_conv1 = bias_variable([32]) | |
# Reshape x to a 4D tensor | |
# -1 is similar to None (unspecified number) | |
x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
# Convolve x_image with the weight tensor, add the bias, apply ReLU, and max pool | |
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) | |
h_pool1 = max_pool_2x2(h_conv1) | |
## Second Convolutional Layer | |
W_conv2 = weight_variable([5, 5, 32, 64]) | |
b_conv2 = bias_variable([64]) | |
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) | |
h_pool2 = max_pool_2x2(h_conv2) | |
## Densely Connected Layer | |
# At this point, image size is 7x7 (max_pool_2x2 twice) | |
W_fc1 = weight_variable([7 * 7 * 64, 1024]) | |
b_fc1 = bias_variable([1024]) | |
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) | |
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) | |
## Dropout | |
# In order to prevent overfitting, we will turn dropout on during training (only) | |
keep_prob = tf.placeholder("float") | |
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) | |
## Readout (Softmax) Layer | |
# Map 1024 neurons from densely connected layer to 10 classes | |
W_fc2 = weight_variable([1024, 10]) | |
b_fc2 = bias_variable([10]) | |
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) | |
## Training | |
# Implement cross entropy | |
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) | |
# Adam Optimizer | |
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) | |
## Evaluation | |
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
sess = tf.InteractiveSession() | |
sess.run(tf.initialize_all_variables()) | |
for i in range(20000): | |
batch = mnist.train.next_batch(50) # take 50 images randomly | |
if i%100 == 0: | |
train_accuracy = accuracy.eval(feed_dict={ | |
x:batch[0], y_: batch[1], keep_prob: 1.0}) | |
print("step %d, training accuracy %g"%(i, train_accuracy)) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) | |
print ("test accuracy %g"%accuracy.eval(feed_dict= | |
{x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
See https://gist.github.com/freedomofkeima/3def80449362f062c17e#gistcomment-1686691 first.