Last active
October 3, 2023 16:52
-
-
Save gVallverdu/0b446d0061a785c808dbe79262a37eea to your computer and use it in GitHub Desktop.
Treemaps with python and matplotlib
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# coding: utf-8 | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import squarify | |
import platform | |
# print versions | |
print("python : ", platform.python_version()) | |
print("pandas : ", pd.__version__) | |
print("matplotlib : ", matplotlib.__version__) | |
print("squarify : 0.4.3") | |
# quantities plotted | |
# squarre area is the town surface area (superf) | |
# color scale is the town population in 2011 (p11_pop) | |
# read data from csv file | |
# data from CAPP opendata http://opendata.agglo-pau.fr/index.php/fiche?idQ=27 | |
df = pd.read_csv("Evolution_et_structure_de_la_population/Evolution_structure_population.csv", sep=";") | |
df = df.set_index("libgeo") | |
df = df[["superf", "p11_pop"]] | |
df2 = df.sort_values(by="superf", ascending=False) | |
# treemap parameters | |
x = 0. | |
y = 0. | |
width = 100. | |
height = 100. | |
cmap = matplotlib.cm.viridis | |
# color scale on the population | |
# min and max values without Pau | |
mini, maxi = df2.drop("PAU").p11_pop.min(), df2.drop("PAU").p11_pop.max() | |
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi) | |
colors = [cmap(norm(value)) for value in df2.p11_pop] | |
colors[1] = "#FBFCFE" | |
# labels for squares | |
labels = ["%s\n%d km2\n%d hab" % (label) for label in zip(df2.index, df2.superf, df2.p11_pop)] | |
labels[11] = "MAZERES-\nLEZONS\n%d km2\n%d hab" % (df2["superf"]["MAZERES-LEZONS"], df2["p11_pop"]["MAZERES-LEZONS"]) | |
# make plot | |
fig = plt.figure(figsize=(12, 10)) | |
fig.suptitle("Population et superficie des communes de la CAPP", fontsize=20) | |
ax = fig.add_subplot(111, aspect="equal") | |
ax = squarify.plot(df2.superf, color=colors, label=labels, ax=ax, alpha=.7) | |
# use this if you want to draw a border between rectangles | |
# you have to give both linewidth and edgecolor | |
# ax = squarify.plot(df2.superf, color=colors, label=labels, ax=ax, alpha=.7, | |
# bar_kwargs=dict(linewidth=1, edgecolor="#222222")) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.set_title("L'aire de chaque carré est proportionnelle à la superficie de la commune\n", fontsize=14) | |
# color bar | |
# create dummy invisible image with a color map | |
img = plt.imshow([df2.p11_pop], cmap=cmap) | |
img.set_visible(False) | |
fig.colorbar(img, orientation="vertical", shrink=.96) | |
fig.text(.76, .9, "Population", fontsize=14) | |
fig.text(.5, 0.1, | |
"Superficie totale %d km2, Population de la CAPP : %d hab" % (df2.superf.sum(), df2.p11_pop.sum()), | |
fontsize=14, | |
ha="center") | |
fig.text(.5, 0.07, | |
"Source : http://opendata.agglo-pau.fr/", | |
fontsize=14, | |
ha="center") | |
plt.savefig("capp_treemaps.png") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is a solution: Let's say the labels are ['Hi', 'This is a very long label']. If you use the f' string and the \n , it will move the rest of the label in a new line: ['Hi', f'This is a \n very long label'].