ϕ, ψ := A | ⊥ | R₁ t | R₂ (t₁, t₂) | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ∀x.ϕ | ∃x.ϕ
A は命題記号
x は変数記号
t,t₁,t₂ は項
R₁は1変数述語記号
R₂は2変数述語記号
import Mathlib.tactic | |
abbrev Var := Nat | |
structure Lang where | |
Const : Type | |
Func : Nat → Type | |
Rel : Nat → Type | |
/------ |
import Mathlib | |
open scoped Pointwise | |
open Polynomial | |
#check Finset.sup_le | |
example [inst : SemilatticeSup α] [inst_1 : OrderBot α] [DecidableEq β] {s : Finset β} {f : β → α} {a : α} : | |
(∀ b ∈ s, f b ≤ a) → s.sup f ≤ a | |
:= by | |
induction s using Finset.induction_on with | |
| empty => simp |
import Mathlib | |
lemma Subgroup.IsCyclic [Group G] [HG : IsCyclic G] (H : Subgroup G) : | |
IsCyclic H | |
:= by | |
haveI := Classical.propDecidable | |
obtain ⟨g, Hg : ∀ h, ∃ k, g ^ k = h⟩ := HG | |
cases' subsingleton_or_nontrivial H with H0 H0 | |
· rcases H0 with ⟨H0⟩ | |
constructor; use 1; intro h; simp |
import Mathlib.tactic | |
example [Group G] [Fintype G] (g : G) : | |
Fintype.card (Subgroup.zpowers g) = orderOf g | |
:= by | |
have : orderOf g = Fintype.card (Fin (orderOf g)) := by simp | |
rw [this] | |
apply Fintype.card_congr | |
refine { | |
toFun := λ ⟨x, Hx⟩ => by |
import Mathlib.tactic | |
import Mathlib.GroupTheory.Complement | |
open Classical | |
open scoped Pointwise | |
lemma Subgroup.card_not_eq [Group G] [Fintype G] (H : Subgroup G) : | |
Fintype.card ↑H ≠ 0 | |
:= by | |
intro F |
From mathcomp Require Import ssreflect. | |
Require Import Nat. | |
Definition name := nat. | |
Inductive proc := | |
| Nil | |
| Tau (P : proc) | |
| Para (P Q : proc) | |
| Sum (P Q : proc) |
From mathcomp Require Import ssreflect. | |
From Autosubst Require Import Autosubst. | |
Require Import Nat. | |
Inductive proc_ := | |
| Var (x : var) | |
| Nil | |
| Para (P Q : proc_) | |
| Repl (P : proc_) | |
| Send (M : proc_) (N : proc_) (P : proc_) |
function Pow(n:nat, k:nat) : (r:nat) | |
ensures n > 0 ==> r > 0 | |
{ | |
if k == 0 then 1 | |
else if k == 1 then n | |
else | |
var p := k / 2; | |
var np := Pow(n,p); | |
if p*2 == k then np * np | |
else |
function Pow(n:nat, k:nat) : (r:nat) | |
// Following needed for some proofs | |
ensures n > 0 ==> r > 0 | |
{ | |
if k == 0 then 1 | |
else if k == 1 then n | |
else | |
var p := k / 2; | |
var np := Pow(n,p); | |
if p*2 == k then np * np |