Skip to content

Instantly share code, notes, and snippets.

import Mathlib.tactic
abbrev Var := Nat
structure Lang where
Const : Type
Func : Nat → Type
Rel : Nat → Type
/------
import Mathlib
open scoped Pointwise
open Polynomial
#check Finset.sup_le
example [inst : SemilatticeSup α] [inst_1 : OrderBot α] [DecidableEq β] {s : Finset β} {f : β → α} {a : α} :
(∀ b ∈ s, f b ≤ a) → s.sup f ≤ a
:= by
induction s using Finset.induction_on with
| empty => simp

論理式

ϕ, ψ := A | ⊥ | R₁ t | R₂ (t₁, t₂) | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ∀x.ϕ | ∃x.ϕ

A は命題記号
x は変数記号
t,t₁,t₂ は項
R₁は1変数述語記号
R₂は2変数述語記号

import Mathlib
lemma Subgroup.IsCyclic [Group G] [HG : IsCyclic G] (H : Subgroup G) :
IsCyclic H
:= by
haveI := Classical.propDecidable
obtain ⟨g, Hg : ∀ h, ∃ k, g ^ k = h⟩ := HG
cases' subsingleton_or_nontrivial H with H0 H0
· rcases H0 with ⟨H0⟩
constructor; use 1; intro h; simp
import Mathlib.tactic
example [Group G] [Fintype G] (g : G) :
Fintype.card (Subgroup.zpowers g) = orderOf g
:= by
have : orderOf g = Fintype.card (Fin (orderOf g)) := by simp
rw [this]
apply Fintype.card_congr
refine {
toFun := λ ⟨x, Hx⟩ => by
import Mathlib.tactic
import Mathlib.GroupTheory.Complement
open Classical
open scoped Pointwise
lemma Subgroup.card_not_eq [Group G] [Fintype G] (H : Subgroup G) :
Fintype.card ↑H ≠ 0
:= by
intro F
From mathcomp Require Import ssreflect.
Require Import Nat.
Definition name := nat.
Inductive proc :=
| Nil
| Tau (P : proc)
| Para (P Q : proc)
| Sum (P Q : proc)
From mathcomp Require Import ssreflect.
From Autosubst Require Import Autosubst.
Require Import Nat.
Inductive proc_ :=
| Var (x : var)
| Nil
| Para (P Q : proc_)
| Repl (P : proc_)
| Send (M : proc_) (N : proc_) (P : proc_)
function Pow(n:nat, k:nat) : (r:nat)
ensures n > 0 ==> r > 0
{
if k == 0 then 1
else if k == 1 then n
else
var p := k / 2;
var np := Pow(n,p);
if p*2 == k then np * np
else
function Pow(n:nat, k:nat) : (r:nat)
// Following needed for some proofs
ensures n > 0 ==> r > 0
{
if k == 0 then 1
else if k == 1 then n
else
var p := k / 2;
var np := Pow(n,p);
if p*2 == k then np * np