Created
May 6, 2025 14:16
-
-
Save gaxiiiiiiiiiiii/d4b140612e18f8a7786e1a3897f1349a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Limits.HasLimits | |
import Mathlib.CategoryTheory.Limits.Preserves.Basic | |
open CategoryTheory | |
open Limits | |
lemma Adjunction_PreservesLimit [Category 𝓐] [Category 𝓑] (F : 𝓐 ⥤ 𝓑) (G : 𝓑 ⥤ 𝓐) (σ : F ⊣ G) : | |
PreservesColimits F | |
:= by | |
refine { | |
preservesColimitsOfShape := by | |
intro 𝓒 _ | |
refine { | |
preservesColimit := by | |
intro K | |
refine { | |
preserves {C} HC := by | |
constructor | |
refine { | |
desc C' := by | |
simp | |
let D : Cocone K := { | |
pt := G.obj C'.pt | |
ι := { | |
app c := σ.unit.app (K.obj c) ≫ G.map (C'.ι.app c) | |
naturality c c' f := by | |
simp | |
have E := σ.unit.naturality | |
conv at E => arg 2; arg 2; arg 2; arg 1; simp | |
rw [<- Category.assoc, E, Category.assoc]; clear E | |
conv => arg 1; arg 2; simp; rw [<- G.map_comp] | |
congr | |
have E := C'.ι.naturality f; simp at E | |
rw [E] | |
} | |
} | |
exact F.map (HC.desc D) ≫ σ.counit.app C'.pt | |
fac C' c := by | |
simp | |
rw [<- Category.assoc, <- F.map_comp] | |
have E := σ.counit.naturality | |
conv at E => arg 2; arg 2; arg 2; arg 2; simp | |
conv at E => arg 2; arg 2; arg 2; arg 1; arg 1; simp | |
rw [HC.fac] | |
conv => arg 1; arg 1; simp | |
rw [Category.assoc, E, <- Category.assoc]; clear E | |
have E := σ.left_triangle_components | |
rw [E]; simp | |
uniq C' m Hm := by | |
simp; simp at m Hm | |
set D : Cocone K := { | |
pt := G.obj C'.pt | |
ι := { | |
app c := σ.unit.app (K.obj c) ≫ G.map (C'.ι.app c) | |
naturality c c' f := by | |
simp | |
have E := σ.unit.naturality | |
conv at E => arg 2; arg 2; arg 2; arg 1; simp | |
rw [<- Category.assoc, E, Category.assoc]; clear E | |
conv => arg 1; arg 2; simp; rw [<- G.map_comp] | |
congr | |
have E := C'.ι.naturality f; simp at E | |
rw [E] | |
} | |
} | |
conv => arg 2; arg 1; change F.map (HC.desc D) | |
let m' : C.pt ⟶ D.pt := σ.unit.app (C.pt) ≫ G.map m | |
have H : (∀ (j : 𝓒), C.ι.app j ≫ m' = D.ι.app j) := by | |
intro i; simp [D, m'] | |
have E := σ.unit.naturality (C.ι.app i) | |
conv at E => arg 1; arg 1; simp | |
conv at E => arg 1; arg 2; simp [Functor.const] | |
rw [<- Category.assoc, E, Category.assoc]; clear E | |
conv => arg 1; arg 2; simp; rw [<- G.map_comp] | |
rw [Hm] | |
have E := HC.uniq D m' H | |
rw [<- E, F.map_comp, Category.assoc] | |
have E := σ.counit.naturality m | |
conv at E => arg 1; arg 1; simp | |
rw [E]; clear E | |
have E := σ.left_triangle_components C.pt | |
rw [<- Category.assoc, E]; simp | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment