Created
February 3, 2024 08:39
-
-
Save gaxiiiiiiiiiiii/4276d6849a508c19740e91ba504f593c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
From mathcomp Require Import ssreflect. | |
From Autosubst Require Import Autosubst. | |
Require Import Nat. | |
Inductive proc_ := | |
| Var (x : var) | |
| Nil | |
| Para (P Q : proc_) | |
| Repl (P : proc_) | |
| Send (M : proc_) (N : proc_) (P : proc_) | |
| Recv (M : proc_) (P : {bind proc_}) | |
| Nu (P : {bind proc_}) | |
. | |
Instance Ids_proc_ : Ids proc_. derive. Defined. | |
Instance Rename_proc_ : Rename proc_. derive. Defined. | |
Instance Subst_proc_ : Subst proc_. derive. Defined. | |
Instance SubstLemmas_proc_ : SubstLemmas proc_. derive. Qed. | |
Definition valid (P : proc_) : Prop := | |
match P with | |
| Var _ => False | |
| Send M N P => | |
match M with | |
| Var _ => | |
match N with | |
| Var _ => True | |
| _ => False | |
end | |
| _ => False | |
end | |
| Recv M P => | |
match M with | |
| Var _ => True | |
| _ => False | |
end | |
| _ => True | |
end. | |
Definition proc := {p : proc_ | valid p}. | |
Definition proc2proc_ : proc -> proc_ := fun P => proj1_sig P. | |
Coercion proc2proc_ : proc >-> proc_. | |
(* Instance Ids_proc : Ids proc. derive. Defined. *) | |
Instance Rename_proc : Rename proc. derive. Defined. | |
Instance Subst_proc : Subst proc. derive. Defined. | |
(* Instance SubstLemmas_proc : SubstLemmas proc. derive. Qed. *) | |
Definition Para_ (P Q : proc) : proc. | |
exists (Para P Q); simpl; auto. | |
Defined. | |
Definition Repl_ (P : proc) : proc. | |
exists (Repl P); simpl; auto. | |
Defined. | |
Definition Send_ (M : var) (N : var) (P : proc) : proc. | |
exists (Send (Var M) (Var N) P); simpl; auto. | |
Defined. | |
Definition Recv_ (M : var) (P : proc) : proc. | |
exists (Recv (Var M) P); simpl; auto. | |
Defined. | |
Definition Nu_ (P : proc) : proc. | |
exists (Nu P); simpl; auto. | |
Defined. | |
Definition Nil_ : proc. | |
exists Nil; simpl; auto. | |
Defined. | |
Definition subst_ (σ : var -> proc) (P : proc) : proc. | |
Proof. | |
exact (P.[σ]). | |
Defined. | |
Notation "P ‖ Q" := (Para_ P Q) (at level 30). | |
Notation "! P" := (Repl_ P) (at level 30). | |
Notation "M _[ N ]_ P" := (Send_ M N P) (at level 30). | |
Notation "< n >_ P" := (Recv_ n P) (at level 30). | |
Notation "0" := Nil_. | |
Notation ν_ := Nu_. | |
Definition rename (σ : var -> var) (P : proc) : proc. | |
Proof. | |
move: P => [p Hp]. | |
eapply exist with (p.[ren σ]). | |
induction p; simpl; auto; simpl in Hp. | |
- destruct p1, p2; simpl; auto. | |
- destruct p; inversion Hp; simpl; auto. | |
Defined. | |
Definition swap_ : var -> var := | |
fun x => match x with | |
| O => 1 | |
| 1 => O | |
| _ => x | |
end. | |
Definition swap : proc -> proc := rename swap_. | |
Fixpoint isFree (n : var) (P : proc_) : Prop := | |
match P with | |
| Send M N' Q => | |
match M, N' with | |
| Var m, Var n' => m = n \/ n'= n \/ isFree n Q | |
| _, _ => False | |
end | |
| Recv M Q => | |
match M with | |
| Var m => m = n \/ isFree n Q | |
| _ => False | |
end | |
| Para P Q => isFree n P \/ isFree n Q | |
| Repl P => isFree n P | |
| Nu P => isFree n P | |
| _ => False | |
end. | |
Definition isFree' (n : var) (P : proc) : Prop := | |
isFree n (proj1_sig P). | |
Inductive congr : proc -> proc -> Prop := | |
| para_nil P : congr (P ‖ 0) P | |
| para_comm P Q : congr (P ‖ Q) (Para_ P Q) | |
| para_assoc P Q R : congr (P ‖ (Q ‖ R)) ((P ‖ Q) ‖ R) | |
| nu_nil : congr (ν_ 0) 0 | |
| nu_swap P : congr (ν_ (ν_ P)) (swap (ν_ (ν_ P))) | |
| nu_free P Q : ~ isFree' O P -> congr (ν_ (P ‖ Q)) (P ‖ (ν_ Q)) | |
| repl_fix P : congr (! P) ((! P) ‖ P) | |
| repl_nil : congr (! 0) 0 | |
| repl_elim P : congr (! ! P) (! P) | |
| repl_para P Q : congr (! (P ‖ Q)) ((! P) ‖ (! Q)). | |
Notation "P ≡ Q" := (congr P Q)(at level 30). | |
Inductive reduct : proc -> proc -> Prop := | |
| reduct_communicate n a P Q : reduct (n _[ a ]_ P ‖ < n >_ Q) (P ‖ rename (fun x => if eqb x O then a else x) Q) | |
| reduct_nu P P' : reduct P P' -> reduct (ν_ P) (ν_ P') | |
| reduct_para P P' Q : reduct P P' -> reduct (P ‖ Q) (P' ‖ Q) | |
| reduct_congr P P' Q Q' : P ≡ P' -> Q ≡ Q' -> reduct P P' -> reduct Q Q'. | |
Notation "P ⇒ Q" := (reduct P Q) (at level 30). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment