Created
January 9, 2024 13:35
-
-
Save gaxiiiiiiiiiiii/9331f4b598b5cd72220cd1dbb3d5fe88 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function Pow(n:nat, k:nat) : (r:nat) | |
ensures n > 0 ==> r > 0 | |
{ | |
if k == 0 then 1 | |
else if k == 1 then n | |
else | |
var p := k / 2; | |
var np := Pow(n,p); | |
if p*2 == k then np * np | |
else | |
np * np * n | |
} | |
lemma mul_assoc (x : nat, y : nat, z : nat) | |
ensures x * y * z == x * (y * z) | |
{} | |
lemma mul_comm (x : nat, y : nat) | |
ensures x * y == y * x | |
{} | |
lemma LemmaPow (n : nat, k : nat) | |
ensures Pow(n, k + 2) == n * n * Pow(n, k) | |
ensures Pow(n, k + 1) == n * Pow(n, k) | |
{ | |
if k == 0 {} | |
else { | |
assert H0 : Pow(n,k) == n * Pow(n, k - 1) by {LemmaPow(n, k-1); } | |
calc { | |
Pow(n, k+1); | |
== {LemmaPow(n, k-1);} | |
n * n * Pow(n,k-1); | |
== {mul_assoc(n,n,Pow(n,k-1));} | |
n * (n * Pow(n,k-1)); | |
== {reveal H0;} | |
n * Pow(n,k); | |
} | |
var x := Pow(n,k/2); | |
assert k/2 < k; | |
assert H1 : Pow(n, k/2 + 1) == n * x by {LemmaPow(n, k/2);} | |
if k % 2 == 0 { | |
assert H2 : Pow(n, k) == x * x; | |
calc { | |
Pow(n, k + 2); | |
== | |
Pow(n, k/2 + 1) * Pow(n, k/2 + 1) ; | |
== {reveal H1;} | |
(n * x) * (n * x); | |
== {mul_assoc((n * x), n, x);} | |
(n * x * n) * x; | |
== {mul_assoc(n,x,n);} | |
(n * (x * n)) * x; | |
== {mul_comm(x,n);} | |
(n * (n * x)) * x; | |
== {mul_assoc(n,n,x);} | |
((n * n) * x) * x; | |
== {mul_assoc(n * n, x, x);} | |
n * n * (x * x); | |
== {reveal H2;} | |
n * n * Pow(n,k); | |
} | |
} else { | |
assert H2 : Pow(n, k) == x * x * n; | |
calc { | |
Pow(n, k+2); | |
== | |
Pow(n,k/2 + 1) * Pow(n,k/2 + 1) * n; | |
== {reveal H1;} | |
(n * x) * (n * x) * n; | |
== {mul_assoc(n*x, n*x, n);} | |
((n * x) * (n * x)) * n; | |
== {mul_comm((n*x) * (n*x) ,n);} | |
n * ((n*x) * (n*x)); | |
== {mul_assoc(n, x, n*x);} | |
n * (n * (x * (n * x))); | |
== {mul_comm(n,x);} | |
n * (n * (x * (x * n))); | |
== {mul_assoc(x,x,n);} | |
n * (n * (x * x * n)); | |
== {reveal H2;} | |
n * (n * Pow(n,k)); | |
== {mul_assoc(n,n,Pow(n,k));} | |
n * n * Pow(n,k); | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment